Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Nonalcoholic fatty liver disease (NAFLD) has been associated with the function and changes in expression levels of microRNAs (miRs). MiR-7 has been proven to play an important role in many cellular processes; however, its functions in the context of liver lipogenesis remain unknown. We applied the microRNA-sponge (miR-SP) technology and generated transgenic miR-7a-SP models (hC7aSP and bC7aSP), which disrupted the activities of hepatic miR-7a and induced the early onset of NAFLD and nonalcoholic steatohepatitis (NASH) in zebrafish. We identified a novel miR-7a target, YY1, and demonstrated novel miR-7a functions to regulate zebrafish hepatic lipid metabolism by controlling YY1 stabilization through the regulation of the expression of lipogenic signaling pathways. Correspondingly, liver specific miR-7a depletion functionally promoted lipid accumulation in hC7ASP livers. NASH hC7aSP increased the expression of inflammatory genes (il-1b, il-6, tnf-α, ifn-γ, nfkb2, and NF-kB) and endoplasmic reticulum stress markers (atf6, ern2, ire1, perk, hspa5 and ddit3). Molecular analysis revealed that miR-7a-SP can stabilize YY1 expression and contribute to the accumulation of hepatic triglycerides by reducing the CHOP-10 expression in the hC7aSP and then inducing the transactivation of C/EBP-α and PPAR-γ expression. PPAR-γ antagonists and miR-7a mimic treatment ameliorate hC7aSP NASH phenotypes.
Conclusion: Our results suggest that miR-7a-SP acts as a lipid enhancer by directly increasing YY1 stability to disrupt CHOP-10-dependent suppression of lipogenic pathways, resulting in increased lipid accumulation. MiR-7a expression improves liver steatosis and steatohepatitis in hC7aSPs, which suggests a novel strategy for the prevention and early treatment of NASH in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2018.04.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!