α-L-Rhamnosidases (α-RHAs, EC 3.2.1.40) are glycosyl hydrolases (GHs) hydrolyzing terminal α-l-rhamnose residues from different substrates such as heteropolysaccharides, glycosylated proteins and natural flavonoids. Although the possibility to hydrolyze rhamnose from natural flavonoids has boosted the use of these enzymes in several biotechnological applications over the past decades, to date only few bacterial rhamnosidases have been fully characterized and only one crystal structure of a rhamnosidase of the GH106 family has been described. In our previous work, an α-l-rhamnosidase belonging to this family, named RHA-P, was isolated from the marine microorganism Novosphingobium sp. PP1Y. The initial biochemical characterization highlighted the biotechnological potential of RHA-P for bioconversion applications. In this work, further functional and structural characterization of the enzyme is provided. The recombinant protein was obtained fused to a C-terminal His-tag and, starting from the periplasmic fractions of induced recombinant cells of E. coli strain BL21(DE3), was purified through a single step purification protocol. Homology modeling of RHA-P in combination with a site directed mutagenesis analysis confirmed the function of residues D503, E506, E644, likely located at the catalytic site of RHA-P. In addition, a kinetic characterization of the enzyme on natural flavonoids such as naringin, rutin, hesperidin and quercitrin was performed. RHA-P showed activity on all flavonoids tested, with a catalytic efficiency comparable or even higher than other bacterial α-RHAs described in literature. The results confirm that RHA-P is able to hydrolyze both α-1,2 and α-1,6 glycosidic linkages, and suggest that the enzyme may locate different polyphenolic aromatic moities in the active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2018.04.013 | DOI Listing |
Methods Mol Biol
January 2025
Plant Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands.
Flavonoids are a group of specialized metabolites that are ubiquitously found within the plant kingdom. While they fulfill various important functions within the plant, they are also utilized by humans in a variety of different fields such as medicine, food science, and agriculture. Thus, to elucidate the chemical composition of any given plant extract, extraction and identification of flavonoids are of high interest.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
Flavonoids are bioactive components in natural products, which possess anti-inflammatory, antibacterial, antioxidant, and cardiovascular protective properties. However, due to the complexity and low content of the components in these samples, developing rapid and sensitive methods for the isolation and extraction of flavonoids still remains a challenge in medical and food science. Herein, a 4-formylphenylboronic acid functionalized magnetic FeO nanomaterial (FeO@FPBA) was synthesized and applied as a sorbent of magnetic solid-phase extraction (MSPE) to covalently extract flavonoids from leaves of Lonicera japonica Thunb.
View Article and Find Full Text PDFSorbitol is an important primary metabolite that serves as both a carbon source and signal to pathogens. The leaf diseases caused by Alternata alternata are particularly serious in crabapple (Malus micromalus). Here, we found that sorbitol can enhance the resistance of crabapple to A.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, The Netherlands.
Deep eutectic solvents (DES) and ionic liquids (ILs), specifically natural deep eutectic solvents (NADES), allow for the extraction of natural products using environmentally friendly solvents instead of organic solvents. Here we describe the extraction of anthocyanins from a medicinal plant using NADES prepared either by evaporating method or heating-and-stirring method with the help of ultrasound-assisted extraction (UAE). The NADES extract can be qualified by the high-performance liquid chromatography (HPLC) method, which can separate the component of NADES with target compounds from medicinal plant.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China. Electronic address:
Silybin, a milk thistle extract, is a flavonolignan compound with hepatoprotective effect. It is commonly used in dietary supplements, functional foods, and nutraceuticals. However, the metabolism of silybin has not been systematically characterized in organisms to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!