Structural changes in chromatin regulate gene expression and define phenotypic outcomes. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Most recently, the formation of condensed chromatin regions based on phase-separation in the cell, a basic physical mechanism, was proposed. Increased understanding of the mechanisms of interaction between chromatin and lipids suggest that small lipid molecules, such as cholesterol and short-chain fatty acids, can regulate important nuclear functions. New biophysical data has suggested that cholesterol interacts with nucleosome through multiple binding sites and affects chromatin structure in vitro. Regardless of the mechanism of how lipids bind to chromatin, there is currently little awareness that lipids may be stored in chromatin and influence its state. Focusing on lipids that bind to nuclear receptors, clinically relevant transcription factors, we discuss the potential interactions of the nucleosome with steroid hormones, bile acids and fatty acids, which suggest that other lipid chemotypes may also impact chromatin structure through binding to common sites on the nucleosome. Herein, we review the main impacts of lipids on the nuclear environment, emphasizing its role on chromatin architecture. We postulate that lipids that bind to nucleosomes and affect chromatin states are likely to be worth investigating as tools to modify disease phenotypes at a molecular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plipres.2018.04.003 | DOI Listing |
Nucleic Acids Res
January 2025
Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.
Dictyostelium discoideum is a unicellular slime mold, developing into a multicellular fruiting body upon starvation. Development is accompanied by large-scale shifts in gene expression program, but underlying features of chromatin spatial organization remain unknown. Here, we report that the Dictyostelium 3D genome is organized into positionally conserved, largely consecutive, non-hierarchical and weakly insulated loops at the onset of multicellular development.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
Background: Despite promising preclinical studies, the application of DNA methyltransferase inhibitors in treating patients with solid cancers has thus far produced only modest outcomes. The presence of intratumoral heterogeneity in response to DNA methyltransferase inhibitors could significantly influence clinical efficacy, yet our understanding of the single-cell response to these drugs in solid tumors remains very limited.
Methods: In this study, we used cancer/testis antigen genes as a model for methylation-dependent gene expression to examine the activity of DNA methyltransferase inhibitors and their potential synergistic effect with histone deacetylase inhibitors at the single-cancer cell level.
Nature
January 2025
Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Cis-regulatory elements (CREs) control gene expression and are dynamic in their structure and function, reflecting changes in the composition of diverse effector proteins over time. However, methods for measuring the organization of effector proteins at CREs across the genome are limited, hampering efforts to connect CRE structure to their function in cell fate and disease. Here we developed PRINT, a computational method that identifies footprints of DNA-protein interactions from bulk and single-cell chromatin accessibility data across multiple scales of protein size.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pimpri, Pune, India. Electronic address:
Histones are positively charged proteins found in the chromatin of eukaryotic cells. They regulate gene expression and are required for the organization and packaging of DNA within the nucleus. Histones are extremely conserved, allowing for transcription, replication, and repair.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!