Background: Several inhaled drugs are dependent on organic cation transporters to cross cell membranes. To further evaluate their potential to impact on inhaled drug disposition, the localization of MATE1, P-gp, OCTN1 and OCTN2 were investigated in human lung.

Methods: Transporter proteins were analysed by immunohistochemistry in lung tissue from healthy subjects and COPD patients. Transporter mRNA was analysed by qPCR in lung tissue and in bronchoalveolar lavage (BAL) cells from smokers and non-smokers.

Results: We demonstrate for the first time MATE1 protein expression in the lung with localization to the apical side of bronchial and bronchiolar epithelial cells. Interestingly, MATE1 was strongly expressed in alveolar macrophages as demonstrated both in lung tissue and in BAL cells, and in inflammatory cells including CD3 positive T cells. P-gp, OCTN1 and OCTN2 were also expressed in the alveolar epithelial cells and in inflammatory cells including alveolar macrophages. In BAL cells from smokers, MATE1 and P-gp mRNA expression was significantly lower compared to cells from non-smokers whereas no difference was observed between COPD patients and healthy subjects. THP-1 cells were evaluated as a model for alveolar macrophages but did not reflect the transporter expression observed in BAL cells.

Conclusions: We conclude that MATE1, P-gp, OCTN1 and OCTN2 are expressed in pulmonary lung epithelium, in alveolar macrophages and in other inflammatory cells. This is important to consider in the development of drugs treating pulmonary disease as the transporters may impact drug disposition in the lung and consequently affect pharmacological efficacy and toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910606PMC
http://dx.doi.org/10.1186/s12931-018-0760-9DOI Listing

Publication Analysis

Top Keywords

mate1 p-gp
16
p-gp octn1
16
octn1 octn2
16
alveolar macrophages
16
cells
12
lung tissue
12
bal cells
12
inflammatory cells
12
drug disposition
8
healthy subjects
8

Similar Publications

Survey of Pharmaceutical Industry's Best Practices around In Vitro Transporter Assessment and Implications for Drug Development: Considerations from the International Consortium for Innovation and Quality for Pharmaceutical Development Transporter Working Group.

Drug Metab Dispos

June 2024

Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.).

The International Consortium for Innovation and Quality in Pharmaceutical Development Transporter Working Group had a rare opportunity to analyze a crosspharma collation of in vitro data and assay methods for the evaluation of drug transporter substrate and inhibitor potential. Experiments were generally performed in accordance with regulatory guidelines. Discrepancies, such as not considering the impact of preincubation for inhibition and free or measured in vitro drug concentrations, may be due to the retrospective nature of the dataset and analysis.

View Article and Find Full Text PDF

Proinflammatory cytokines, which are elevated during inflammation or infections, can affect drug pharmacokinetics (PK) due to the altered expression or activity of drug transporters and/or metabolizing enzymes. To date, such studies have focused on the effect of cytokines on the activity and/or mRNA expression of hepatic transporters and drug-metabolizing enzymes. However, many antibiotics and antivirals used to treat infections are cleared by renal transporters, including the basal organic cation transporter 2 (OCT2), organic anion transporters 1 and 3 (OAT1 and 3), the apical multidrug and toxin extrusion proteins 1 and 2-K (MATE1/2-K), and multidrug resistance-associated protein 2 and 4 (MRP2/4).

View Article and Find Full Text PDF

The renal tubular organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1) mediate the vectorial elimination of many drugs and toxins from the kidney, and endogenous biomarkers for vectorial transport (OCT2-MATE1) would allow more accurate drug dosing and help to characterize drug-drug interactions and toxicity. Human serum uptake in OCT2-overexpressing cells and metabolomics analysis were carried out. Potential biomarkers were verified in vitro and in vivo.

View Article and Find Full Text PDF

A Pilot Study To Assess the Suitability of Riboflavin As a Surrogate Marker of Breast Cancer Resistance Protein in Healthy Participants.

J Pharmacol Exp Ther

July 2024

Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey.

We recently showed that riboflavin is a selected substrate of breast cancer resistance protein (BCRP) over P-glycoprotein (P-gp) and demonstrated its prediction performance in preclinical drug-drug interaction (DDI) studies. The aim of this study was to investigate the suitability of riboflavin to assess BCRP inhibition in humans. First, we assessed the substrate potential of riboflavin toward other major drug transporters using established transfected cell systems.

View Article and Find Full Text PDF

Brigatinib is an oral anaplastic lymphoma kinase (ALK) inhibitor approved for the treatment of ALK-positive metastatic non-small cell lung cancer. In vitro studies indicated that brigatinib is primarily metabolized by CYP2C8 and CYP3A4 and inhibits P-gp, BCRP, OCT1, MATE1, and MATE2K. Clinical drug-drug interaction (DDI) studies with the strong CYP3A inhibitor itraconazole or the strong CYP3A inducer rifampin demonstrated that CYP3A-mediated metabolism was the primary contributor to overall brigatinib clearance in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!