A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photolysis of glutaraldehyde in brine: A showcase study for removal of a common biocide in oil and gas produced water. | LitMetric

Photolysis of glutaraldehyde in brine: A showcase study for removal of a common biocide in oil and gas produced water.

J Hazard Mater

Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA. Electronic address:

Published: July 2018

Glutaraldehyde (GA) has been used extensively as a biocide in hydraulic fracturing fluid leading to its presence in oil and gas produced water. In this study, photolysis was used to degrade GA from brine solutions simulating produced water. Photolysis of GA was performed under ultraviolet (UV) irradiation. GA can be photolyzed by UV at all studied conditions with the efficiency ranging from 52 to 85% within one hour irradiation. Photolysis of GA followed pseudo-first order kinetics. A photolysis rate constant of GA at 0.1 mM in 200 g/L of salt at pH 7 was 0.0269 min with a quantum yield of 0.0549 under 224 W illumination. The degradation rate of GA increased with increasing incident light intensity and decreasing pH. Increasing initial GA concentration resulted in decreasing degradation rate of GA. The degradation of GA was affected by salt concentration. At lower salt concentrations, notable retardation of GA photodegradation rate was observed while at higher salt concentrations GA photodegradation was improved compared to those without salt. OH was more dominant in sample without salt than sample with salt suggesting different photolytic mechanisms, indirect and direct photolysis, respectively. Oligomers were identified as the main photoproducts of GA photolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2018.03.056DOI Listing

Publication Analysis

Top Keywords

produced water
12
oil gas
8
gas produced
8
degradation rate
8
salt concentrations
8
sample salt
8
photolysis
7
salt
7
photolysis glutaraldehyde
4
glutaraldehyde brine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!