Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173063PMC
http://dx.doi.org/10.1164/rccm.201804-0684EDDOI Listing

Publication Analysis

Top Keywords

making sepsis
4
sepsis molecular
4
molecular time
4
time tests?
4
making
1
molecular
1
time
1
tests?
1

Similar Publications

Background: Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose a significant global healthcare challenge, particularly due to the high mortality risk associated with septic shock. This study aimed to develop and validate a machine learning-based model to predict the risk of MDR-KP-associated septic shock, enabling early risk stratification and targeted interventions.

Methods: A retrospective analysis was conducted on 1,385 patients with MDR-KP infections admitted between January 2019 and June 2024.

View Article and Find Full Text PDF

Background: Clinical determination of patients at high risk of poor surgical outcomes is complex and may be supported by clinical tools to summarize the patient's own personalized electronic health record (EHR) history and vitals data through predictive risk models. Since prior models were not readily available for EHR-integration, our objective was to develop and validate a risk stratification tool, named the Assessment of Geriatric Emergency Surgery (AGES) score, predicting risk of 30-day major postoperative complications in geriatric patients under consideration for urgent and emergency surgery using pre-surgical existing electronic health record (EHR) data.

Methods: Patients 65-years and older undergoing urgent or emergency non-cardiac surgery within 21 hospitals 2017-2021 were used to develop the model (randomly split: 80% training, 20% test).

View Article and Find Full Text PDF

Sepsis is a critical, life-threatening condition that demands precise prediction to mitigate adverse outcomes. The heterogeneity of sepsis leads to variable prognoses, making early and accurate identification increasingly difficult. Despite ongoing advancements, no single gold standard has emerged for sepsis prediction.

View Article and Find Full Text PDF

Postoperative neurocognitive dysfunction (PND) is a prevalent and debilitating complication in elderly surgical patients, characterized by persistent cognitive decline that negatively affects recovery and quality of life. As the aging population grows, the rising number of elderly surgical patients has made PND an urgent clinical challenge. Despite increasing research efforts, the pathophysiological mechanisms underlying PND remain inadequately characterized, underscoring the need for a more integrated framework to guide targeted interventions.

View Article and Find Full Text PDF

Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to inform digital twin models of critical illness. This study aims to identify common clinical trajectories based on dynamic assessment of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients with sepsis admitted to ICUs of Mayo Clinic Hospitals over eight-year period. Patient trajectories were modeled from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespiratory support in ICU and hospital discharge status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!