Bulb-shaped field emission lamps (FELs) with a helical cathode filament were simulated and fabricated in this research. The light bulbs comprised a helical stainless steel filament cathode grown with carbon nano-coils (CNCs) and an Al anode deposited on the bottom hemisphere of a 60-mm-diameter glass bulb. White light was generated when the field-emitted electrons bombarded a layer of three-color phosphor coated on the anode. A numerical simulation model for the helical-cathode FELs was constructed, and the field emission (FE) performance was carefully studied. Due to the screening effect, the electric field strength as well as the FE current density on the inner side of the helix dramatically decreased with decreasing helical pitch. Real FELs using cathodes with various helical radii and pitches were fabricated and their FE currents were measured. The theoretical and experimental results were in good agreement. A maximum total FE current was found at a pitch of 16 mm (helical radius = 2 mm), where the optimum trade-off between a large total surface area and a small screening effect was obtained. The optimized FEL showed a total luminous flux of about 220 lm at an applied voltage of 8 kV and a color rendering index of 94. Compared to a straight filament cathode, a helical cathode offered a higher total FE current or, alternatively, a lower current density and a longer cathode life, if we fix the total current by using a lower voltage.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2017.12707DOI Listing

Publication Analysis

Top Keywords

field emission
12
total current
12
bulb-shaped field
8
emission lamps
8
helical cathode
8
filament cathode
8
current density
8
helical
6
cathode
5
current
5

Similar Publications

Prostate cancer antigen 3 (PCA3) has emerged as a critical biomarker for the early detection of prostate cancer, complementing the traditional prostate-specific antigen (PSA) testing. This research presents a novel resistive sensor based on reduced graphene oxide (RGO) functionalized with glutaraldehyde (GA)/complementary single-stranded DNA (ss-DNA) for the detection of the PCA3 RNA. The device was meticulously characterized at each fabrication step to confirm the successful integration of the various layers on the sensor device, utilizing atomic force microscopy (AFM) which confirmed the increase in the thickness of the sensor from ∼1.

View Article and Find Full Text PDF

Amino-Acid-Induced Circularly Polarized Luminescence of Octahedral Lanthanide Cage.

Angew Chem Int Ed Engl

January 2025

Zhengzhou University, College of Chemistry, No 100. Kexue Avenue, 450001, Zhengzhou, CHINA.

Chiral metal organic cage compounds with excellent circularly polarized luminescent performance have broad application prospects in many fields. Herein, two lanthanide complexes with luminescent properties in the form of racemic hexagonal octahedral cages were synthesized using a tri (β-diketone) ligand. Eu6(C21H6F15O6)8(H2O)6 exhibited red light emission with high quantum yields of 61%.

View Article and Find Full Text PDF

This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.

View Article and Find Full Text PDF

The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.

View Article and Find Full Text PDF

In this study, the AlFeO@n-Pr@Et-SOH heterogeneous catalyst was successfully synthesized and utilized to produce biodiesel from oleic acid through an esterification process and to oxidize sulfides. To examine the physicochemical characteristics of the AlFeO@n-Pr@Et-SOH nanomaterial, a variety of advanced techniques were employed, including Fourier Transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), Elemental Mapping, Transmission electron microscopy (TEM), Inductively coupled plasma (ICP), and X-ray diffraction (XRD). The AlFeO@n-Pr@Et-SOH materials demonstrated excellent performance in both the esterification of oleic acid and the oxidation of sulfides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!