Excellent corrosion resistance is crucial for photovoltaic devices to acquire high and stable performance under high corrosive complicated environments. Creative inspiration comes from sandwich construction, whereby Fe3O4 nanoparticles were anchored onto hollow core-shell carbon mesoporous microspheres and wrapped by N-graphene nanosheets (HCCMS/Fe3O4@N-RGO) to obtain integrated high corrosive resistance and stability. The as-prepared multiple composite material possesses outstanding performance as a result of structure optimization, performance improvement, and interface synergy. Therefore, it can effectively suppress corrosion from the electrolyte in recycled tests many times, indicating the ultrahigh corrosion resistance life of this double carbon-based nanocomposite. Furthermore, the electrical conductivity and conversion efficiency of the composite are well maintained due to the triple synergistic interactions, which could serve as a guideline in establishing high-performance multifunctional HCCMS/Fe3O4@N-RGO with great prospects in energy devices, such as lithium batteries, supercapacitors and electrode materials, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr01095a | DOI Listing |
Small
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Electromagnetic pollution protection and military stealth technologies underscore the urgent need to develop efficient electromagnetic wave-absorbing materials (EWAMs). Traditional EWAMs suffer from single absorption loss mechanisms, poor impedance matching, and weak reflection loss. To date, combining dielectric loss with magnetic loss in EWAMs have proven to be an effective approach to enhancing electromagnetic absorption performance.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India. Electronic address:
Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
As the demand for clean water intensifies, developing effective methods for removing pollutants from contaminated sources becomes increasingly crucial. This work establishes a method for additive manufacturing of functional polymer sorbents with hollow porous features, designed to enhance interactions with organic micropollutants. Specifically, core-shell filaments are used as the starting materials, which contain polypropylene (PP) as the shell and poly(acrylonitrile-co-butadiene-co-styrene) as the core, to fabricate 3-dimensional (3D) structures on-demand via material extrusion.
View Article and Find Full Text PDFChem Sci
December 2024
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University Nanyang 473601 P. R. China
The conversion of carbon dioxide (CO) into carbon-neutral fuels using solar energy is crucial for achieving energy sustainability. However, the high carrier charge recombination and low CO adsorption capacity of the photocatalysts present significant challenges. In this paper, a TAPB-COF@ZnInS-30 (TAPB-COFZ-30) heterojunction photocatalyst was constructed by growth of ZnInS (ZIS) on a hollow covalent organic framework (HCOF) with a hollow core-shell structure for CO to CO conversion.
View Article and Find Full Text PDFFood Chem
December 2024
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!