Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: The research of novel and potent antidiabetic agents is urgently needed for the control of the exploding diabetic population. We previously reported the synthesis and antidiabetic activity of natural 8-(6"-umbelliferyl)-apigenin (1), but its antidiabetic targets are not known. Therefore, four series of derivatives were synthesized and evaluated for their antidiabetic activities. Results & methodology: Compounds (5a) and (14a) were identified as new α-glucosidase and α-amylase dual inhibitors. The kinetic analysis of the most potent α-glucosidase inhibitor of each series of compounds revealed that they inhibited α-glucosidase in irreversible modes. In addition, compounds (5a) and (14a) showed potent glucose consumption-promoting activity.
Conclusion: Compounds (5a) and (14a) could be regarded as promising starting points for the development of antidiabetic candidates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc-2017-0293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!