In zebra finches (Taeniopygia guttata), estradiol contributes to sexual differentiation of the song system but the receptor(s) underlying its action are not exactly known. Whereas mRNA and/or protein for nuclear estrogen receptors ERα and ERβ are minimally expressed, G-protein coupled estrogen receptor 1 (GPER1) has a much greater distribution within neural song regions and the syrinx. At present, however, it is unclear if this receptor contributes to dimorphic development of the song system. To test this, the specific GPER1 antagonist, G-15, was intracranially administered to zebra finches for 25 days beginning on the day of hatching. In males, G-15 significantly decreased nuclear volumes of HVC and Area X. It also decreased the muscle fiber sizes of ventralis and dorsalis in the syrinx. In females, G-15 had no effect on measures within the brain, but did increase fiber sizes of both muscle groups. In sum, these data suggest that GPER1 can have selective and opposing influences on dimorphisms within the song system, but since not all features were affected additional factors are likely involved. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dneu.22599DOI Listing

Publication Analysis

Top Keywords

song system
16
zebra finches
12
g-protein coupled
8
coupled estrogen
8
estrogen receptor
8
antagonist g-15
8
finches taeniopygia
8
taeniopygia guttata
8
fiber sizes
8
song
5

Similar Publications

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Liquid-based encapsulation for implantable bioelectronics across broad pH environments.

Nat Commun

January 2025

Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.

Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Turning to critical illness is a common stage of various diseases and injuries before death. Patients usually have complex health conditions, while the treatment process involves a wide range of content, along with high requirements for doctor's professionalism and multi-specialty teamwork, as well as a great demand for time-sensitive treatments. However, this is not matched with critical care professionals and the current state of medical care in China.

View Article and Find Full Text PDF

Rationale & Objective: Sharing Patient's Illness Representations to Increase Trust (SPIRIT) is an evidence-based advance care planning intervention targeting dialysis patients and their surrogate decision-makers. To address SPIRIT's implementation potential, we report on a process evaluation in our recently completed five-state cluster-randomized trial.

Study Design: A descriptive study of implementation within a randomized clinical trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!