Convergent beam electron diffraction (CBED) in transmission electron microscopy (TEM) was applied to determine local carbon concentrations in low-carbon transformation-induced plasticity (TRIP) steels. High-order Laue-zone (HOLZ) lines were experimentally obtained for comparison with simulation results. A new procedure for calculating carbon content is thus proposed. Retained austenite (RA) is classified into three types by morphology; the relationship between the carbon content and the corresponding RA morphology is discussed based on CBED results. Furthermore, results of X-Ray diffractometry measurements are also used for comparison.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.23042DOI Listing

Publication Analysis

Top Keywords

convergent beam
8
beam electron
8
electron diffraction
8
diffraction cbed
8
transformation-induced plasticity
8
plasticity trip
8
trip steels
8
carbon content
8
application convergent
4
cbed analysis
4

Similar Publications

Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.

View Article and Find Full Text PDF

Three-Dimensional Measurements of Sphenoid Sinus Size by Sex in a Korean Population: An Exploratory Study.

Diagnostics (Basel)

December 2024

Department of Bio Health Convergency Open Sharing System, Dan-Kook University, Cheonan 31116, Republic of Korea.

This study aims to investigate the three-dimensional morphological differences of the sphenoid sinus according to sex in the Korean adult population and conduct an exploratory study based on the findings. The sphenoid sinus, located deep within the skull, plays a crucial role in forensic identification due to its relative protection from external damage and its unique anatomical characteristics. Using cone-beam computed tomography (CBCT) data from 120 patients (60 males and 60 females) aged 20-29, the sphenoid sinus was visualized and measured in three dimensions using Mimics software (version 22.

View Article and Find Full Text PDF

Advances and challenges in precision imaging.

Lancet Oncol

January 2025

Department of Radiology and Center for Systems Biology, Massachusetts General Brigham, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Electronic address:

Article Synopsis
  • Technological innovations in genomics have enabled large sequencing projects and new biological insights in cancer, leading to the rise of liquid biopsy biomarkers.
  • Despite progress in precision oncology, challenges remain due to cancer's complexity and variability, impacting effective treatment strategies.
  • Advanced imaging technologies are being developed to enhance early detection and treatment options, but there are obstacles to their wider implementation in clinical settings that must be addressed.
View Article and Find Full Text PDF
Article Synopsis
  • The study aims to improve visualization of arteries during endovascular procedures for peripheral artery disease by using an image registration technique that fuses X-ray and CT angiography images.
  • The method involved aligning digital images based on the positions of the bones and achieved successful registration in most cases, with accurate alignment of less than 1 mm in distance.
  • The results indicate that this technique is clinically viable for guiding interventions, as it allows for early detection of potential complications like guidewire perforations while maintaining a reasonable processing time.
View Article and Find Full Text PDF

Pulse-by-pulse transient thermal deformation in crystal optics under high-repetition-rate FEL.

J Synchrotron Radiat

January 2025

LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

Time-domain modeling of the thermal deformation of crystal optics can help define acceptable operational ranges across the pulse-energy repetition-rate phase space. In this paper, we have studied the transient thermal deformation of a water-cooled diamond crystal for a cavity-based X-ray free-electron laser (CBXFEL), either an X-ray free-electron laser oscillator (XFELO) or a regenerative amplifier X-ray free-electron laser (RAFEL), by numerical simulations including finite-element analysis and advanced data processing. Pulse-by-pulse transient thermal deformation of a 50 µm-thick diamond crystal has been performed with X-ray pulse repetition rates between 50 kHz and 1 MHz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!