Adapting to the cold extrauterine environment after birth is a great challenge for the newborn. Due to their high surface area-to-volume ratio, infants tend to lose more heat to the environment as compared to adults. In addition, human newborns lack sufficiently developed skeletal muscle mass to maintain body temperature through shivering thermogenesis, an important source of heat in cold-exposed adults. Evolution has provided humans and other placental mammals with brown adipose tissue (BAT), a tissue that converts chemically stored energy, in the form of fatty acids and glucose, into heat through non-shivering thermogenesis. The thermogenic activity of this tissue is significant for the human infant's ability to maintain a sufficiently high core body temperature. Although BAT has been studied in human infants for more than a century, the literature covering different aspects of the tissue is rather limited. The aim of this review is to summarize the literature and describe what is actually known about the tissue and its importance for early human life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/164_2018_118 | DOI Listing |
Cell Rep
January 2025
Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Hepatic stellate cells (HSCs) are key drivers of local fibrosis. Adiponectin, conventionally thought of as an adipokine, is also expressed in quiescent HSCs. However, the impact of its local expression on the progression of liver fibrosis remains unclear.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2024
Curtin University, Curtin Medical Research Institute (Bentley, WA, AUSTRALIA).
Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.
View Article and Find Full Text PDFCommun Biol
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.
View Article and Find Full Text PDFNat Commun
January 2025
Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.
View Article and Find Full Text PDFAm J Obstet Gynecol MFM
January 2025
School of Medicine, Tufts University; Tufts Medical Center.
Objective: The maternal metabolic environment in early pregnancy can influence fetal growth trajectories. Our objective was to identify interventions initiated in early pregnancy (<20 weeks gestation) in pregnant individuals with risk factors for hyperglycemia and report their impact on primary (neonatal adiposity, small for gestational age, large for gestational age, macrosomia) and secondary outcomes (gestational weight gain, maternal hypertensive disorder, birth injury, NICU admission, preterm delivery, emergency cesarean section).
Data Sources: We searched Cochrane Central database, Medline, Embase, CINAHL databases, and clinicaltrials.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!