A major open challenge in neuroscience is the ability to measure and perturb neural activity in vivo from well defined neural sub-populations at cellular resolution anywhere in the brain. However, limitations posed by scattering and absorption prohibit non-invasive multi-photon approaches for deep (>2mm) structures, while gradient refractive index (GRIN) endoscopes are relatively thick and can cause significant damage upon insertion. Here, we present a novel micro-endoscope design to image neural activity at arbitrary depths via an ultra-thin multi-mode optical fiber (MMF) probe that has 5-10X thinner diameter than commercially available micro-endoscopes. We demonstrate micron-scale resolution, multi-spectral and volumetric imaging. In contrast to previous approaches, we show that this method has an improved acquisition speed that is sufficient to capture rapid neuronal dynamics in-vivo in rodents expressing a genetically encoded calcium indicator (GCaMP). Our results emphasize the potential of this technology in neuroscience applications and open up possibilities for cellular resolution imaging in previously unreachable brain regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905901 | PMC |
http://dx.doi.org/10.1364/BOE.9.001492 | DOI Listing |
Phys Rev Lett
December 2024
East China Normal University, State Key Laboratory of Precision Spectroscopy, and Hainan Institute, Shanghai, China.
We reveal a new scenario for the transition of solitons to chaos in a mode-locked fiber laser: the modulated subharmonic route. Its universality is confirmed in two different laser configurations, namely, a figure-of-eight and a ring laser. Numerical simulations of the laser models agree well with the experiments.
View Article and Find Full Text PDFJ Glaucoma
January 2025
Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI.
Precis: Current optical coherence tomography normative sample data may not represent diverse human optic nerve anatomy to accurately classify all individuals with true glaucomatous optic neuropathy.
Purpose: To compare optic nerve head (ONH) measurements between published values from an optical coherence tomography (OCT) normative database and a more diverse cohort of healthy individuals.
Patients And Methods: ONH parameters from healthy participants of the Michigan Screening and Intervention for Glaucoma and Eye Health through Telemedicine (MI-SIGHT) program and the Topcon Maestro-1 normative cohort were compared.
As a low-energy method to increase the data rate of optical links in data centers, we propose self-homodyne Nyquist optical time division multiplexing (OTDM). In Nyquist OTDM, spectrally efficient high-baud rate signals can be generated exceeding the limit of electronic signal processing. However, full integration of OTDM systems has not been reported, mainly because of the complicated signal detection scheme, which involves demultiplexing and clock recovery.
View Article and Find Full Text PDFWe demonstrate a widely spaced, stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. Using an ultra-stable Fabry-Perot etalon as a stable reference, we simultaneously stabilize a CW laser and generate a low noise and stable RF oscillation used to drive an electro-optic comb. In such a manner, the Fabry-Perot etalon pins both the carrier-envelope-offset frequency ( ) and the repetition rate of the comb in place ( ), eliminating the need for an external RF oscillator.
View Article and Find Full Text PDFMode-selective converters (MSCs) play an indispensable role in mode division multiplexing (MDM) systems, and the commonly used cascaded waveguide-based MSCs not only have a relatively large size but also increase the insertion loss and mode crosstalk during the conversion process. In this paper, a parallel six-mode-selective converter (6-MSC) is proposed to enhance the integration of the device, which consists of a photonic crystal fiber (PCF) and six step-index fibers (SIFs). Here, a PCF without any holes in the cladding is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!