Laser-accelerated protons, generated by irradiating a solid target with a short, energetic laser pulse at high intensity (I > 10 W·cm), represent a complementary if not outperforming source compared to conventional accelerators, due to their intrinsic features, such as high beam charge and short bunch duration. However, the broadband energy spectrum of these proton sources is a bottleneck that precludes their use in applications requiring a more reduced energy spread. Consequently, in recent times strong effort has been put to overcome these limits and to develop laser-driven proton beamlines with low energy spread. In this paper, we report on beam dynamics simulations aiming at optimizing a laser-driven beamline - i.e. a laser-based proton source coupled to conventional magnetic beam manipulation devices - producing protons with a reduced energy spread, usable for applications. The energy range of investigation goes from 2 to 20 MeV, i.e. the typical proton energies that can be routinely obtained using commercial TW-power class laser systems. Our beamline design is capable of reducing the energy spread below 20%, still keeping the overall transmission efficiency around 1% and producing a proton spot-size in the range of 10 mm. We briefly discuss the results in the context of applications in the domain of Cultural Heritage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908965 | PMC |
http://dx.doi.org/10.1038/s41598-018-24391-2 | DOI Listing |
Heliyon
July 2024
Department of Business Sciences - Management & Innovation Systems/DISA-MIS, University of Salerno, Italy.
This article aims to provide a systematic review of the literature on animal biomass and biogas plants through an analysis of externalities and benefits in economic, social, and environmental terms. In recent years, the spread of biogas plants has played an important role, especially in rural areas, generating benefits not only for the individual farm but for entire communities, contributing to the reduction of energy poverty and, at the same time, promoting the production of energy and organic manure. In light of the findings, the study argues that: (a) more public subsidies are needed; (b) the deployment of an appropriate policy mix would encourage the spread of small and medium-sized plants, with a reduction in road transport; and (c) targeted and diversified investments are needed on a geographic-by-geographic basis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana.
Access to clean and efficient cooking fuel is crucial for promoting good health, safeguarding the environment, and driving economic growth. Despite efforts to promote the adoption of cleaner alternatives, traditional solid fuels such as charcoal and firewood remain prevalent in Ghana. In this study, we utilized a statistical mechanical model as a framework to explore the statistical relationship between socio-economic factors such as educational attainment, wealth status, place of residence, and cooking fuel choices.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea.
Molecular diagnosis limitations, including complex treatment processes, low cost-effectiveness, and operator-dependent low reproducibility, interrupt the timely prevention of disease spread and the development of medical devices for home and outdoor uses. A newly fabricated gold nanopillar array-based film is presented for superior photothermal energy conversion. Magnifying the metal film surface-to-volume ratio increases the photothermal energy conversion efficiency, resulting in a swift reduction in the gene amplification reaction time.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia; Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic. Electronic address:
Tire wear microplastics (TWMs) are continuously generated during driving and are subsequently released into the environment, where they pose potential risks to aquatic organisms. In this study, the effects of untreated, hydrated, and environmentally aged TWMs on the growth, root development, photosynthesis, electron transport system (ETS) activity, and energy-rich molecules of duckweed Lemna minor were investigated. The results indicated that untreated and aged TWMs have the most pronounced negative effects on Lemna minor, as evidenced by reduced growth and impaired root development.
View Article and Find Full Text PDFTurk J Pharm Sci
January 2025
Fenerbahçe University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Türkiye.
Introduction: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), from the family Coronaviridae, is the seventh known coronavirus to infect humans and cause acute respiratory syndrome. Although vaccination efforts have been conducted against this virus, which emerged in Wuhan, China, in December 2019 and has spread rapidly around the world, the lack of an Food and Drug Administration-approved antiviral agent has made drug repurposing an important approach for emergency response during the COVID-19 pandemic. The aim of this study was to investigate the potential of H1-antihistamines as antiviral agents against SARS-CoV-2 RNA-dependent RNA polymerase enzyme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!