High glucose (HG)-induced mammalian target of rapamycin (mTOR) overactivation acts as a signaling hub for the formation of tau hyperphosphorylation, which contributes to the development of diabetes-associated cognitive deficit. How HG induces the sustained activation of mTOR in neurons is not clearly understood. ErbB4, a member of the receptor tyrosine kinase family, plays critical roles in development and function of neural circuitry, relevant to behavioral deficits. Here, we showed HG-induced ErbB4 overexpression in differentiated SH-SY5Y cells and primary hippocampal neurons and hippocampal pyramidal neurons of streptozotocin-induced diabetic rats. Inhibition of ErbB4 signaling prevented the HG-induced activation of mTOR/S6K signaling to suppress tau hyperphosphorylation. In contrast, ErbB4 overexpression increased the activation of mTOR/S6K signaling, resulting in tau hyperphosphorylation similar to HG treatment. We also demonstrated that HG upregulated the expression of ErbB4 at a mTOR-dependent posttranscriptional level. Together, our results provide the first evidence for the presence of a positive feedback loop for the sustained activation of mTOR involving overexpressed ErbB4, leading to the formation of tau hyperphosphorylation under HG condition. Therefore, ErbB4 is a potential therapeutic target for diabetes-associated neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2018.03.023DOI Listing

Publication Analysis

Top Keywords

tau hyperphosphorylation
16
high glucose
8
positive feedback
8
feedback loop
8
erbb4
8
differentiated sh-sy5y
8
sh-sy5y cells
8
formation tau
8
sustained activation
8
activation mtor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!