Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer.

J Control Release

Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Published: July 2018

Triple negative breast cancer is an aggressive disease that accounts for at least 15% of breast cancer diagnoses, and a disproportionately high percentage of breast cancer related morbidity. Intensive research efforts are focused on the development of more efficacious treatments for this disease, for which therapeutic options remain limited. The high incidence of mutations in key DNA repair pathways in triple negative breast cancer results in increased sensitivity to DNA damaging agents, such as platinum-based chemotherapies. Hyperthermia has been successfully used in breast cancer treatment to sensitize tumors to radiation therapy and chemotherapy. It has also been used as a mechanism to trigger drug release from thermosensitive liposomes. In this study, mild hyperthermia is used to trigger release of cisplatin from thermosensitive liposomes in the vasculature of human triple negative breast cancer tumors implanted orthotopically in mice. This heat-triggered liposomal formulation of cisplatin resulted in significantly delayed tumor growth and improved overall survival compared to treatment with either non-thermosensitive liposomes containing cisplatin or free cisplatin, as was observed in two independent tumor models (i.e. MDA-MB-231 and MDA-MB-436). The in vitro sensitivity of the cell lines to cisplatin and hyperthermia alone and in combination was characterized extensively using enzymatic assays, clonogenic assays, and spheroid growth assays. Evaluation of correlations between the in vitro and in vivo results served to identify the in vitro approach that is most predictive of the effects of hyperthermia in vivo. Relative expression of several heat shock proteins and the DNA damage repair protein BRCA1 were assayed at baseline and in response to hyperthermia both in vitro and in vivo. Interestingly, delivery of cisplatin in thermosensitive liposomes in combination with hyperthermia resulted in the most significant tumor growth delay, relative to free cisplatin, in the less cisplatin-sensitive cell line (i.e. MDA-MB-231). This work demonstrates that thermosensitive cisplatin liposomes used in combination with hyperthermia offer a novel method for effective treatment of triple negative breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2018.04.029DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
triple negative
20
negative breast
20
thermosensitive liposomes
12
cisplatin
9
breast
8
cancer
8
cisplatin thermosensitive
8
tumor growth
8
free cisplatin
8

Similar Publications

In this study, we synthesized 12 monofunctional tridentate ONS-donor salicylaldimine ligand ()-based Ru(II) complexes with general formula [(Ru()(-cymene)]·Cl (-), characterized by H NMR, C NMR, UV, FT-IR spectroscopy, HR-ESI mass spectrometry, and single-crystal X-ray analysis showing ligand's orientation around the Ru(II) center. All 12 of these 12 complexes were tested for their anticancer activities in multiple cancer cells. The superior antitumor efficacy of , , and was demonstrated by reduced mitochondrial membrane potential, impaired proliferative capacity, and disrupted redox homeostasis, along with enhanced apoptosis through caspase-3 activation and downregulation of Bcl-2 expression.

View Article and Find Full Text PDF

Background: To investigate the performance of contrast-enhanced ultrasound(CEUS) parameters of metastatic axillary lymph nodes (ALNs) before and after two courses of neoadjuvant chemotherapy (NAC) in breast cancer patients in predicting the efficacy of NAC.

Methods: A total of 41 postoperative breast cancer patients were selected. All patients underwent NAC, and ALN biopsy was positive before chemotherapy.

View Article and Find Full Text PDF

Unlabelled: Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape.

View Article and Find Full Text PDF

Mucinous carcinoma of the breast, also known as colloid carcinoma, is an uncommon type of differentiated adenocarcinoma, representing only 2% of all invasive breast carcinomas. It usually occurs in women ≥ 60 years of age. Mucinous carcinoma is characterized by clusters of epithelial tumour cells suspended in pools of extracellular mucin and is further divided in 2 subgroups, pure and mixed.

View Article and Find Full Text PDF

Background: Breast cancer is one of the most common cancers among Pakistani women. It is mostly diagnosed at stage 2, requiring chemotherapy in certain cases. Chemotherapy is of two types: adjuvant and neoadjuvant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!