Anesthetic mechanisms that eliminate consciousness and perception of pain are products of the nervous system. Chemical approaches to the study of anesthetic mechanisms have the potential to serve as an ideal interface between basic and clinical neuroscience. There are disproportionately more basic neurochemical studies than clinical studies of anesthetic mechanisms. Even within neuroscience, the study of anesthetic mechanisms is sparse. The Society for Neuroscience hosts one of the world's largest and most vibrant scientific meetings, yet the content themes of that meeting do not include anesthesia. One goal of this chapter is to facilitate neurochemical studies of anesthetic mechanisms by outlining user-friendly descriptions of existing and emerging techniques. The introduction provides a context for chapter goals. The second portion of this chapter focuses on microdialysis methods that enable the humane acquisition of neurochemical samples from intact, behaving animals during anesthetic induction, maintenance, and emergence. No single neurotransmitter and no single brain region regulate the physiological and behavioral traits characteristic of any anesthetic state. This limitation is being addressed via application of new instrumentation and techniques in analytic chemistry. The final third of this chapter highlights selected omics approaches that are now being applied to the neurochemical study of anesthetic mechanisms. We hope that this brief chapter can stimulate basic and clinical metabolomic approaches aiming to elucidate the mechanisms of anesthetic action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2018.01.024 | DOI Listing |
Alzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.
Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.
Clin J Pain
January 2025
Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
Objectives: Chronic pain (CP) significantly impacts emotional and physical well-being and overall quality of life across diverse populations in the United States (U.S.).
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
Background: Hyperuricemia (HUA) is a condition characterized by excessive uric acid production and/or inadequate uric acid excretion due to abnormal purine metabolism in the human body. Uric acid deposits resulting from HUA can lead to complications such as renal damage. Currently, drugs used to treat HUA lack specificity and often come with specific toxic side effects.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
Clear cell renal cell carcinoma (ccRCC) is one of the most common and aggressive malignancies of the urinary system. Despite being the first-line treatment for advanced ccRCC, vascular endothelial growth factor receptor inhibitors (VEGFRis) face significant limitations due to both initial and acquired resistance, which impede complete tumor eradication. Using a CRISPR/Cas9 library screening approach, was identified as a resistance-associated gene for three prevalent VEGFRis (Sunitinib, Axitinib, and Sorafenib).
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China.
Aging is a complex biological process that involves the gradual decline of cellular, tissue, and organ functions. In kidney, aging manifests as tubular atrophy, glomerulosclerosis, and progressive renal function decline. The critical role of senescence-associated macrophage in diseases, particularly kidney diseases, is increasingly recognized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!