Background: Effective vaccines against porcine reproductive and respiratory syndrome virus (PRRSV), especially against highly pathogenic (HP) PRRSV are still missing. The objective of this study was to evaluate the protective efficacy of an experimental live attenuated PRRSV 2 vaccine, composed of two strains, against heterologous challenge with a Vietnamese HP PRRSV 2 field strain. For this reason, 20 PRRSV negative piglets were divided into two groups. The pigs of group 1 were vaccinated with the experimental vaccine, group 2 remained unvaccinated. All study piglets received an intranasal challenge of the HP PRRSV 2 on day 0 of the study (42 days after vaccination). Blood samples were taken on days 7 and 21 after vaccination and on several days after challenge. On day 28 after challenge, all piglets were euthanized and pathologically examined.
Results: On days 7 and 21 after vaccination, a PRRSV 2 viraemia was seen in all piglets of group 1 which remained detectable in seven piglets up to 42 days after vaccination. On day 3 after challenge, all piglets from both groups were positive in PRRSV 2 RT-qPCR. From day 7 onwards, viral load and number of PRRSV 2 positive pigs were lower in group 1 than in group 2. All pigs of group 1 seroconverted after PRRSV 2 vaccination. PRRSV antibodies were detected in serum of all study pigs from both groups from day 14 after challenge onwards. In group 2, moderate respiratory symptoms with occasional coughing were seen following the challenge with HP PRRSV 2. Pigs of group 1 remained clinically unaffected. Interstitial pneumonia was found in four piglets of group 1 and in all ten piglets of group 2. Histopathological findings were more severe in group 2.
Conclusions: It was thus concluded that the used PRRSV 2 live experimental vaccine provided protection from clinical disease and marked reduction of histopathological findings and viral load in pigs challenged with a Vietnamese HP PRRSV 2 field strain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907707 | PMC |
http://dx.doi.org/10.1186/s12917-018-1451-y | DOI Listing |
Vet Microbiol
January 2025
College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in growing pigs, leading to significant economic losses worldwide. Due to the constant mutation and recombination, PRRSV exhibits significant genetic diversity, the general detection of all PRRSV-2 and PRRSV-1 strains is thus needed. In our study, four monoclonal antibodies (mAbs) against PRRSV nucleocapsid (N) protein were generated and the precise and novel B cell epitopes (KPHF and HHTVR) were identified.
View Article and Find Full Text PDFVet Immunol Immunopathol
January 2025
Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Bicutan, Taguig 1634, Philippines. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common respiratory disease-causing viral agents. Swine infected with PRRSV exhibit severe respiratory symptoms and reproductive failure, leading to significant economic losses. To address this issue, inactivated and live-attenuated vaccines have been developed.
View Article and Find Full Text PDFmSphere
January 2025
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.
Existing genetic classification systems for porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), such as restriction fragment length polymorphisms and sub-lineages, are unreliable indicators of close genetic relatedness or lack sufficient resolution for epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale classification system for PRRSV-2 genetic variants in the United States. Based on >25,000 U.
View Article and Find Full Text PDFVet Res
January 2025
Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses in the swine industry. However, the molecular mechanisms behind the common and cell type-specific systemic responses during PRRS virus (PRRSV) infection are not well understood. In this study, we collected viremia data, antibody levels, and whole-blood RNA-seq data obtained from eight PRRSV-infected piglets.
View Article and Find Full Text PDFFront Vet Sci
January 2025
College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Introduction: After being discovered for the first time in China in 2017, porcine reproductive and respiratory syndrome virus (PRRSV) NADC34-like strains have become the prevalent strain of PRRSV in certain regions of China. Our previous study showed that reduced Ingelvac PRRS MLV vaccination dosages against NADC30-like PRRSV had a better protection effect than the normal dosage. However, the protective effect of reduced dosages vaccination of Ingelvac PRRS MLV against NADC34-like PRRSV is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!