Bevacizumab Improves Achilles Tendon Repair in a Rat Model.

Cell Physiol Biochem

Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.

Published: July 2018

Background/aims: Effective wound-healing generally requires efficient re-vascularization after injury, ensuring sufficient supply with oxygen, nutrients, and various cell populations. While this applies to most tissues, tendons are mostly avascular in nature and harbor relatively few cells, probably contributing to their poor regenerative capacity. Considering the minimal vascularization of healthy tendons, we hypothesize that controlling angiogenesis in early tendon healing is beneficial for repair tissue quality and function.

Methods: To address this hypothesis, Bevacizumab, a monoclonal antibody blocking VEGF-A signaling, was locally injected into the defect area of a complete tenotomy in rat Achilles tendon. At 28 days post-surgery, the defect region was investigated using immunohistochemistry against vascular and lymphatic epitopes. Polarization microscopy and biomechanical testing was used to determine tendon integrity and gait analysis for functional testing in treated vs non-treated animals.

Results: Angiogenesis was found to be significantly reduced in the Bevacizumab treated repair tissue, accompanied by significantly reduced cross sectional area, improved matrix organization, increased stiffness and Young's modulus, maximum load and stress. Further, we observed an improved gait pattern when compared to the vehicle injected control group.

Conclusion: Based on the results of this study we propose that reducing angiogenesis after tendon injury can improve tendon repair, potentially representing a novel treatment-option.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000489057DOI Listing

Publication Analysis

Top Keywords

achilles tendon
8
tendon repair
8
repair tissue
8
tendon
6
bevacizumab improves
4
improves achilles
4
repair
4
repair rat
4
rat model
4
model background/aims
4

Similar Publications

Background: Operative management of chronic Achilles tendinopathy with large defects can be surgically challenging. Concerns exist regarding transosseous transfer of the flexor hallucis longus (FHL) tendon because of the shortened lever arm of flexion and weakening of the big toe. The aim of this study was to demonstrate the 2-year outcome of transosseous FHL transfer for the treatment of large Achilles tendon defects.

View Article and Find Full Text PDF

Duplication of the Plantaris Tendon and Its Clinical Significance: A Case Report.

Cureus

December 2024

Orthopedics and Traumatology, Unidade Local de Saúde do Nordeste, Macedo de Cavaleiros, PRT.

The plantaris tendon may be absent in some individuals, indicating its unclear function. Anatomically, the plantaris tendon originates from the lateral femoral condyle and has a variable course and insertion point at the calcaneal tuberosity. The plantaris tendon may influence conditions such as Achilles tendinopathy, particularly in its midportion, whether by its close relation to the calcaneal tendon or adhesions between both tendons.

View Article and Find Full Text PDF

Achilles tendon overuse injuries are common for long-distance runners. Ankle exos (exoskeletons and exosuits) are wearable devices that can reduce Achilles tendon loading and could potentially aid in the rehabilitation or prevention of these injuries by helping to mitigate and control tissue loading. However, most ankle exos are confined to controlled lab testing and are not practical to use in real-world running.

View Article and Find Full Text PDF

Purpose: Eccentric calf training for Achilles tendinopathy shows variable success in athletes. Recent insights suggest a role for tendon fluid flow (exudation or redistribution) during exercise, which explains post-exercise reductions in thickness and increases in stiffness of the tendon. This fluid flow is thought to be beneficial as it may promote tendon remodeling, reduce intratendinous pressure, and alleviate pain.

View Article and Find Full Text PDF

Multimodal fuzzy logic-based gait evaluation system for assessing children with cerebral palsy.

Sci Rep

January 2025

Department of Biomedical Engineering, Faculty of Mechanical and Electrical Engineering, Damascus University, Damascus 86, Syria.

Gait analysis is crucial for identifying functional deviations from the normal gait cycle and is essential for the individualized treatment of motor disorders such as cerebral palsy (CP). The primary contribution of this study is the introduction of a multimodal fuzzy logic system-based gait index (FLS-GIS), designed to provide numerical scores for gait patterns in both healthy children and those with CP, before and after surgery. This study examines and evaluates the surgical outcomes in children with CP who have undergone Achilles tendon lengthening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!