Ion pairing within complex solutions and electrolytes is a difficult phenomenon to measure and investigate, yet it has significant impact upon macroscopic processes, such as crystal formation. Traditional methods of detecting and characterizing ion pairing are sensitive to contact ion pairs, may require minimum concentrations that limit applicability, and can have difficulty in characterizing solutions with many components. Because of its element specificity and sensitivity to local environment, X-ray absorption near edge structure (XANES) is a promising tool for investigating ion pairing in complex solutions. In concentrated sodium aluminate solutions, a shift in the pre-edge shoulder correlated to sodium concentration is observed, and the physical origins of that shift are investigated using energy specific time-dependent density functional theory of subensembles obtained from ab initio molecular dynamics. Two transitions are found to contribute to the pre-edge feature, yet they are anticorrelated with respect to the sodium···aluminate distance. Unexpectedly, this causes Al XANES to be an effective probe for longer-range ion interactions than the traditional counterparts of NMR or vibrational spectroscopies. Given the nature of the transitions involved, this observation may be extended to other systems where ion-ion interactions dominate; however, a complete understanding of the contributing transitions is necessary for accurate analysis of XANES pre-edge features in concentrated electrolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.8b00642DOI Listing

Publication Analysis

Top Keywords

ion pairing
12
pre-edge features
8
x-ray absorption
8
concentrated electrolytes
8
pairing complex
8
complex solutions
8
ion
5
anticorrelated contributions
4
pre-edge
4
contributions pre-edge
4

Similar Publications

We report the first implementation of ion mobility mass spectrometry combined with an ultra-high throughput sample introduction technology for high throughput screening (HTS). The system integrates differential ion mobility (DMS) with acoustic ejection mass spectrometry (AEMS), termed DAEMS, enabling the simultaneous quantitation of structural isomers that are the sub-strates and products of isomerase mediated reactions in intermediary metabolism. We demonstrate this potential by comparing DAEMS to a luminescence assay for the isoform of phosphoglycerate mutase (iPGM) distinctively present in pathogens offering an opportunity as a drug target for a variety of microbial and parasite borne diseases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness and safety of dentifrices containing Nano silver fluoride (NSF) against the bacteria Streptococcus mutans, which causes tooth decay.
  • Researchers synthesized NSF particles and created dentifrices with varying concentrations of NSF, assessing their antimicrobial properties using an agar diffusion method and cytotoxicity on mouse macrophage cells.
  • Results showed that NSF dentifrices inhibited bacterial growth effectively while also evaluating their impact on cell viability to ensure safety for use in oral health products.
View Article and Find Full Text PDF

The black soldier fly, , is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from . Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity.

View Article and Find Full Text PDF

Group 4 metallocenes are competent catalysts for the oligomerization of higher α-olefins. Among the many chemical and physical variables of importance in the process, one is the choice of cocatalyst (activator). The impact of various activators on the performance of a representative catalyst, (nBuCp)ZrCl, in the oligomerization of 1-octene was thoroughly investigated; in particular, the molecular weight distribution (MWD) of the oligomers was determined by means of high-resolution high performance liquid chromatography (HR-HPLC).

View Article and Find Full Text PDF

Principles of ion binding to RNA inferred from the analysis of a 1.55 Å resolution bacterial ribosome structure - Part I: Mg2.

Nucleic Acids Res

December 2024

Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France.

The importance of Mg2+ ions for RNA structure and function cannot be overstated. Several attempts were made to establish a comprehensive Mg2+ binding site classification. However, such descriptions were hampered by poorly modelled ion binding sites as observed in a recent cryo-EM 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!