Electrofluorochromism has attracted great attention due to the intelligence optoelectronic and sensing applications. The intrinsically switchable fluorophores with high solid-state fluorescence are regarded as key for ideal electrofluorochromic materials. Here, we reported an AIE-active polyamide with diphenylamine and tetraphenylethylene units, showing high fluorescence quantum yield up to 69.1% for the solid polymer film and stable electrochemical cycling stability. The polyamide exhibited reversible color and emission switching even in hundreds of cycles, and the fluorescence on/off contrast ratio was determined up to 417, which is the highest value to our knowledge. Furthermore, as the response time is vital for the real-life applications, to speed up the response of electrofluorochromism, a porous polymer film was readily prepared through a facile method, notably exhibiting high fluorescence contrast, long-term stability and obviously improved response, due to the sharply increased surface area. Therefore, the AIE-functionalization combining the porous structure strategy will synergistically and dramatically improve the electrofluorochromic performance, which will also promote their practical applications in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b01624 | DOI Listing |
Chemistry
August 2023
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
Chiral aggregation-induced emission (AIE) molecules have drawn attention for their helical self-assembly and special optical properties. The helical self-assembly of AIE-active chiral non-linear main-chain polymers can produce some desired optical features. In this work, a series of V-shaped chiral AIE-active polyamides P1-C3, P1-C6, P1-C12 and linear P2-C3, P2-C6, bearing n-propyl/hexyl/dodecyl side-chains, based on tetraphenylbutadiene (TPB), were prepared.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2018
Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry , Jilin University, Changchun 130012 , PR China.
Electrofluorochromism has attracted great attention due to the intelligence optoelectronic and sensing applications. The intrinsically switchable fluorophores with high solid-state fluorescence are regarded as key for ideal electrofluorochromic materials. Here, we reported an AIE-active polyamide with diphenylamine and tetraphenylethylene units, showing high fluorescence quantum yield up to 69.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!