A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimating long-term treatment effects in observational data: A comparison of the performance of different methods under real-world uncertainty. | LitMetric

In the presence of time-dependent confounding, there are several methods available to estimate treatment effects. With correctly specified models and appropriate structural assumptions, any of these methods could provide consistent effect estimates, but with real-world data, all models will be misspecified and it is difficult to know if assumptions are violated. In this paper, we investigate five methods: inverse probability weighting of marginal structural models, history-adjusted marginal structural models, sequential conditional mean models, g-computation formula, and g-estimation of structural nested models. This work is motivated by an investigation of the effects of treatments in cystic fibrosis using the UK Cystic Fibrosis Registry data focussing on two outcomes: lung function (continuous outcome) and annual number of days receiving intravenous antibiotics (count outcome). We identified five features of this data that may affect the performance of the methods: misspecification of the causal null, long-term treatment effects, effect modification by time-varying covariates, misspecification of the direction of causal pathways, and censoring. In simulation studies, under ideal settings, all five methods provide consistent estimates of the treatment effect with little difference between methods. However, all methods performed poorly under some settings, highlighting the importance of using appropriate methods based on the data available. Furthermore, with the count outcome, the issue of non-collapsibility makes comparison between methods delivering marginal and conditional effects difficult. In many situations, we would recommend using more than one of the available methods for analysis, as if the effect estimates are very different, this would indicate potential issues with the analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001810PMC
http://dx.doi.org/10.1002/sim.7664DOI Listing

Publication Analysis

Top Keywords

treatment effects
12
methods
11
long-term treatment
8
performance methods
8
methods provide
8
provide consistent
8
consistent estimates
8
marginal structural
8
structural models
8
cystic fibrosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!