Proteins CD9 and CD81 are members of the tetraspanin superfamily and were detected in mammalian sperm, where they are suspected to form an active tetraspanin web and to participate in sperm⁻egg membrane fusion. The importance of these two proteins during the early stages of fertilization is supported by the complete sterility of CD9/CD81 double null female mice. In this study, the putative mechanism of CD9/CD81 involvement in tetraspanin web formation in sperm and its activity prior to fertilization was addressed. Confocal microscopy and colocalization assay was used to determine a mutual CD9/CD81 localization visualised in detail by super-resolution microscopy, and their interaction was address by co-immunoprecipitation. The species-specific traits in CD9 and CD81 distribution during sperm maturation were compared between mice and humans. A mutual position of CD9/CD81 is shown in human spermatozoa in the acrosomal cap, however in mice, CD9 and CD81 occupy a distinct area. During the acrosome reaction in human sperm, only CD9 is relocated, compared to the relocation of both proteins in mice. The structural modelling of CD9 and CD81 homologous and possibly heterologous network formation was used to propose their lateral Cis as well as Trans interactions within the sperm membrane and during sperm⁻egg membrane fusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979608 | PMC |
http://dx.doi.org/10.3390/ijms19041236 | DOI Listing |
Front Immunol
January 2025
Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
Bovine besnoitiosis is a re-emerging cattle disease caused by the apicomplexan parasite , which severely affects individual animal welfare and profitability in cattle industry. We recently showed that tachyzoite exposure to bovine polymorphonuclear neutrophils (PMN) effectively triggers neutrophil extracellular trap (NET) formation, leading to parasite immobilization hampering host cell infection. So far, the triggers of this defense mechanism remain unclear.
View Article and Find Full Text PDFCytotechnology
February 2025
College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, 266109 China.
Osteoarthritis is a degenerative disease of cartilage, and exosome derived from mesenchymal stem cells (MSCs) are considered promising for treating inflammatory musculoskeletal disorders, although their mechanisms are not fully understood. This study aimed to investigate the effects of exosomes derived from canine bone marrow mesenchymal stem cells (cBMSCs-Exos) on the expression of inflammatory factors and genes related cartilage matrix metabolism in IL-1β-induced canine chondrocytes. Canine BMSCs were isolated and characterized for surface markers and trilineage differentiation.
View Article and Find Full Text PDFBlood Res
December 2024
Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Introduction: Despite advances in the treatment of acute myeloid leukemia (AML), refractory forms of this malignancy and relapse remain common. Therefore, development of novel, synergistic targeted therapies are needed urgently. Recently, mesenchymal stem cells (MSCs) have been shown to be effective in treating various diseases, with most of their therapeutic outcomes attributed to their exosomes.
View Article and Find Full Text PDFImmunol Invest
December 2024
School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.
Background: Exosomes can be found in the synovial fluid of inflamed knee joints, which play a significant role in osteoarthritis (OA) progression. However, their role - in modulating the cellular environment within the body, particularly monocytes remain unexplored. This study aimed to evaluate the immunomodulatory effect of exosomes on monocytes.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia.
Background: Although osteoarthritis (OA) is the most prevalent form of arthritis, there is still no effective treatment capable of combining immunomodulatory effects with cartilage repair. Extracellular vesicles (EVs) represent a promising new generation of cell-free therapies for OA. Blood-derived products, including plasma, are an easily available and abundant source of EVs with anti-inflammatory and regenerative properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!