A Low Molecular Weight Protein from the Sea Anemone with an Anti-Angiogenic Activity.

Mar Drugs

Aix-Marseille University (AMU), Université d'Avignon, Centre National de la Recherche Scientifique (CNRS), Institut de la Recherche et du Développement (IRD), Institut Méditerranéen de Biologie et d'Ecologie. CNRS UMR 7263 IRD 237 Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille, France.

Published: April 2018

Sea anemones are a remarkable source of active principles due to a decentralized venom system. New blood vessel growth or angiogenesis is a very promising target against cancer, but the few available antiangiogenic compounds have limited efficacy. In this study, a protein fraction, purified from tentacles of , was able to limit endothelial cells proliferation and angiogenesis at low concentration (14 nM). Protein sequences were determined with Edman degradation and mass spectrometry in source decay and revealed homologies with Blood Depressing Substance (BDS) sea anemones. The presence of a two-turn alpha helix observed with circular dichroism and a trypsin activity inhibition suggested that the active principle could be a Kunitz-type inhibitor, which may interact with an integrin due to an Arginine Glycin Aspartate (RGD) motif. Molecular modeling showed that this RGD motif was well exposed to solvent. This active principle could improve antiangiogenic therapy from existing antiangiogenic compounds binding on the Vascular Endothelial Growth Factor (VEGF).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923421PMC
http://dx.doi.org/10.3390/md16040134DOI Listing

Publication Analysis

Top Keywords

sea anemones
8
antiangiogenic compounds
8
active principle
8
rgd motif
8
low molecular
4
molecular weight
4
weight protein
4
protein sea
4
sea anemone
4
anemone anti-angiogenic
4

Similar Publications

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.

View Article and Find Full Text PDF

Oxylipin signalling is central in biology, mediating processes such as cellular homeostasis, inflammation and molecular signalling. It may also facilitate inter-partner communication in the cnidarian-dinoflagellate symbiosis, though this aspect remains understudied. In this study, four oxylipin receptors were characterised using immunohistochemistry and immunoblotting in the sea anemone Exaiptasia diaphana ('Aiptasia'): Prostaglandin E2 receptor 2 (EP2) and 4 (EP4), Transient Receptor Potential cation channel A1 (TRPA1) and Glutamate Receptor Ionotropic, Kainate 2 (GRIK2).

View Article and Find Full Text PDF

Regeneration, the ability to restore body parts after injury, is widespread in metazoans; however, the underlying molecular and cellular mechanisms involved in this process remain largely unknown, and its evolutionary history is consequently unresolved. Recently, reactive oxygen species (ROS) have been shown in several metazoan models to be triggers of apoptosis and cell proliferation that drive regenerative success. However, it is not known whether the contribution of ROS to regeneration relies on conserved mechanisms.

View Article and Find Full Text PDF

Ten described species of sea anemones (Anthozoa: Hexacorallia: Actiniaria) serve as hosts to charismatic clownfishes (or anemonefishes) on coral reefs throughout the tropical Indo-West Pacific. Although not diverse in number, the clownfish-hosting sea anemones have large biogeographic ranges, exhibit extensive intraspecific phenotypic appearances, and have been surrounded by a great deal of historical and contemporary taxonomic and nomenclatural confusion. We believe these factors have created challenges for field scientists making real-time species-level identifications of host sea anemones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!