A novel hyperthermophilic, acidophilic and facultatively anaerobic archaeon, strain KD-1, was isolated from an acidic hot spring in Indonesia and characterized with the phylogenetically related species Sulfurisphaera ohwakuensis Kurosawa et al. 1998, Sulfolobus tokodaii Suzuki et al., 2002 and Sulfolobus yangmingensis Jan et al. 1999. Cells of KD-1 were irregular cocci with diameters of 0.9-1.3 µm. The strain grew at 60-90 °C (optimum 80-85 °C), pH 2.5-6.0 (optimum pH 3.5-4.0) and 0-1.0 % (w/v) NaCl concentration. KD-1 grew anaerobically in the presence of S (headspace: H2/CO2) and FeCl3 (headspace: N2). Under aerobic conditions, chemolithoautotrophic growth occurred on S, pyrite, K2S4O6, Na2S2O3 and H2. This strain utilized various complex substrates, such as yeast extract, but did not grow on sugars and amino acids as the sole carbon source. The main core lipids were calditoglycerocaldarchaeol and caldarchaeol. The DNA G+C content was 30.6 mol%. Analyses of phylogenetic trees based on 16S rRNA and 23S rRNA genes indicated that KD-1 formed an independent lineage near Sulfurisphaera ohwakuensis TA-1, Sulfolobus tokodaii 7 and Sulfolobus yangmingensis YM1. On the basis of the results of morphological, physiological, chemotaxonomic and phylogenetic analyses, KD-1 represents a novel species of the genus Sulfurisphaera Kurosawa et al. 1998, for which the name Sulfurisphaera javensis sp. nov. is proposed. The type strain is KD-1 (=JCM 32117=InaCC Ar81). Based on the data, we also propose the reclassification of Sulfolobus tokodaii Suzuki et al., 2002 as Sulfurisphaera tokodaii comb. nov. (type strain 7=JCM 10545=DSM 16993).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/ijsem.0.002765 | DOI Listing |
Nat Commun
January 2025
Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
The archaeal ribosome is of the eukaryotic type. TACK and Asgard superphyla, the closest relatives of eukaryotes, have ribosomes containing eukaryotic ribosomal proteins not found in other archaea, eS25, eS26 and eS30. Here, we investigate the case of Saccharolobus solfataricus, a TACK crenarchaeon, using mainly leaderless mRNAs.
View Article and Find Full Text PDFMol Microbiol
December 2024
CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France.
DNA topology is a direct consequence of the double helical nature of DNA and is defined by how the two complementary DNA strands are intertwined. Virtually every reaction involving DNA is influenced by DNA topology or has topological effects. It is therefore of fundamental importance to understand how this phenomenon is controlled in living cells.
View Article and Find Full Text PDFmBio
December 2024
Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
Unlabelled: Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon .
View Article and Find Full Text PDFFront Microbiol
November 2024
Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
, a thermoacidophilic archaeon of the phylum Thermoproteota (former Crenarchaeota), is a widely used model organism for gene deletion studies and recombinant protein production. Previous research has demonstrated the efficacy of the promoter (P), providing low basal activity and high pentose-dependent induction. However, the available expression vector does not include a 5'-terminal untranslated region (5'-UTR), a typical element found in bacterial expression vectors that usually enhances protein production in bacteria.
View Article and Find Full Text PDFNat Commun
November 2024
Living Systems Institute, University of Exeter, Exeter, UK.
Archaea produce various protein filaments with specialised functions. While some archaea produce only one type of filament, the archaeal model species Sulfolobus acidocaldarius generates four. These include rotary swimming propellers analogous to bacterial flagella (archaella), pili for twitching motility (Aap), adhesive fibres (threads), and filaments facilitating homologous recombination upon UV stress (UV pili).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!