For brain magnetic resonance (MR) examination, three-dimensional imaging is commonly performed. Radiologists need to know the appropriate imaging angle for viewing. We present six imaging angles for the axial images. Each angle is determined by the reference line. The landmarks on the midsagittal MR image to determine the angle of the reference lines are as follows: the supraorbito-meatal line (the center of the mammillary body and the fastigium of the fourth ventricle), the orbito-meatal (OM) line (the center of the mammillary body and the most posterior point of the cerebellar tentorium), the Talairach anterior commissure (AC)-posterior commissure (PC) line (the superior edge of the AC and the inferior edge of the PC), the Schaltenbrand AC-PC line (the center of the AC and the center of the PC), the subcallosal line (the inferior border of the genu and the inferior border of the splenium of the corpus callosum), Reid's baseline (the center of the pituitary gland and the most posterior point of the cerebellar tentorium) and the brainstem vertical line (the line perpendicular to the posterior border of the brainstem). The AC-PC line is most commonly used in MR examination. The OM line is most commonly used in computed tomography examination. The supraorbito-meatal line is recommended for avoiding irradiation to the orbit. In cases of multiple sclerosis, the subcallosal line is recommended in the guidelines. For lesions in the orbital cavity, paranasal cavity or skull base, Reid's baseline is useful. For cases of brainstem lesions, the brainstem vertical line is useful.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111434 | PMC |
http://dx.doi.org/10.1177/1971400918769911 | DOI Listing |
Chin Med J (Engl)
January 2025
Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
Sci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Gynecologic Oncology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
Background: This study aimed to explore the relationship of cervical tumor lesion location (CTLL) with bilateral parametrial involvement (PI) and pelvic lymph node metastasis (LNM).
Methods: The study retrospectively analyzed the clinicopathologic and imaging data of patients with cervical squamous cell carcinoma (SCC) retrieved from multiple centers. According to the CTLL, patients were allocated to three groups: a middle one third group, a unilaterally dominant group, and the entire-region group.
Sci Rep
January 2025
Department of Ophthalmology, West China Hospital of Sichuan University, No.37, Guoxue Xiang, Chengdu, 610041, Sichuan, China.
The purpose of this study is to evaluate the effectiveness of intensity-modulated radiation therapy (IMRT) combined with periorbital triamcinolone acetonide injection in treating thyroid eye disease (TED) patients with active extraocular muscle but low CAS. The retrospective observational study was conducted. A total of 156 eligible patients were selected from the TED patient database of the Ophthalmology Department of West China Hospital of Sichuan University.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!