In this study, poly(D,L-lactic acid)–polyethylene glycol–poly(D,L-lactic acid), hereafter referred to as PDLLA–PEG–PDLLA, triblock copolymer membranes were prepared by electrospinning. Scanning electron microscopy images revealed the morphology of the microfibers, which had a diameter ranging from 300 to 900 nm. Fourier transform infrared spectroscopy was employed for structural analysis of the PDLLA–PEG–PDLLA/florfenicol (FF) membranes, which exhibited three absorption peaks at 3455, 1684, and 1533 cm−1, respectively, indicating that the triblock copolymer and FF are very well blended in the composite membranes. Differential scanning calorimetry revealed that weak interaction possibly decreased the activity of the segment and elevated the T g from 43 °C to 46 °C. From the in vitro dissolution tests, PDLLA as a biodegradable and biocompatible polymer can improve the solubility of FF. The rate of drug release increased with increasing PEG proportion. Furthermore, tensile and nanoindentation tests demonstrated that nanofibers exhibit mechanical properties such as tensile stress (700–2800 KPa), strain (40–120%), and good toughness (0.28–0.98 GPa). In conclusion, PDLLA–PEG–PDLLA nanofibers as a carrier improve the solubility of FF and control drug release.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2017.12717DOI Listing

Publication Analysis

Top Keywords

drug release
12
polydl-lactic acid–polyethylene
8
acid–polyethylene glycol–polydl-lactic
8
glycol–polydl-lactic acid
8
triblock copolymer
8
improve solubility
8
preparation performance
4
performance polydl-lactic
4
acid electrospun
4
electrospun fibrous
4

Similar Publications

Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.

View Article and Find Full Text PDF

Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR.

View Article and Find Full Text PDF

Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice.

Sci Transl Med

January 2025

College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.

View Article and Find Full Text PDF

Assembly-enhanced recognition: A biomimetic pathway to achieve ultrahigh affinities.

Proc Natl Acad Sci U S A

January 2025

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.

View Article and Find Full Text PDF

Role of Acorus calamus extract in reducing exosome secretion by targeting Rab27a and nSMase2: a therapeutic approach for breast cancer.

Mol Biol Rep

January 2025

Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.

Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!