Type 2 diabetes mellitus (T2DM) is a major risk factor for ischemic stroke accompanied by vascular dysfunction and poor cerebrovascular outcome. Lixisenatide is a glucagon like peptide-1 (GLP-1) analog that is recently used for T2DM treatment with established neuroprotective properties. This study investigated and compared the neuroprotective effect of lixisenatide against glimepiride on diabetic rats subjected to global cerebral ischemia/reperfusion (I/R) injury. T2DM-induced adult male Wistar rats were administered lixisenatide or glimepiride prior to induction of global cerebral I/R-induced injury. Results showed a disturbance in oxidative stress parameters (catalase, reduced glutathione, and malondialdehyde) along with increasing in caspase-3 and tumor necrosis factor-alpha protein expressions in ischemic diabetic brain tissues. An upregulation of protein level of inducible nitric oxide (iNOS) synthase and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit, NOX2 gene expression associated with significant suppression of endothelial nitric oxide synthase (eNOS) protein expression are recorded in carotid arteries of diabetic I/R-injured rats. Apart from ameliorating glucose intolerance and insulin resistance, lixisenatide was found to be superior to glimepiride as protective treatment in terms of enhancing behavioral/neurological functions and suppressing cerebral oxidative stress, inflammation, and apoptosis in cerebral I/R-injured diabetic rats. Unlike glimepiride, lixisenatide relieved carotid endothelial dysfunction by increasing eNOS expression. It also dampened vascular nitrosative/oxidative stress via suppression of iNOS and NADPH oxidase expressions. This study supposed that lixisenatide represents a more suitable anti-diabetic therapy for patients who are at risk of ischemic stroke, and even so, the mechanisms of lixisenatide-mediated vascular protection warrant further experimental and clinical investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-018-1497-1 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFNutrients
January 2025
Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
Background: It seems that some substances of plant origin may exert health-promoting activities in diabetes and its complications, including those concerning bones. Chrysin (5,7-dihydroxyflavone), present in honey, some plants, and food of plant origin, has been reported to exert, among others, antioxidative, anti-inflammatory and antidiabetic effects. The aim of this study was to investigate the effects of chrysin on the skeletal system of rats with experimental type 1 diabetes (T1D).
View Article and Find Full Text PDFNutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFNutrients
January 2025
Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
Background: Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes.
View Article and Find Full Text PDFNutrients
January 2025
Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.
: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!