BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis.

Cell Mol Immunol

Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

Published: December 2018

Leukotriene B4 (LTB4) synthesis is enhanced in the colonic mucosa in patients with inflammatory bowel disease (IBD). BLT1, a high-affinity receptor for LTB4, exhibits no effect on the progression of dextran sodium sulfate (DSS)-induced colitis, which mostly relies on innate immunity. Here, we reported that BLT1 regulates trinitrobenzene sulfonic acid (TNBS)-induced colitis, which reflects CD4 T-cell-dependent adaptive immune mechanisms of IBD. We found that BLT1 signaling enhanced the progression of colitis through controlling the production of proinflammatory cytokines by dendritic cells (DCs) and modulating the differentiation of Th1 and Th17. BLT1 mice displayed an alleviated severity of TNBS-induced colitis with reduced body weight loss and infiltrating cells in the lamina propria. BLT1 deficiency in DCs led to reduced production of proinflammatory cytokines, including IL-6, TNF-α, and IL-12, and these results were further confirmed via treatment with a BLT1 antagonist. The impaired cytokine production by BLT1 DCs subsequently led to reduced Th1 and Th17 differentiation both in vitro and in vivo. We further performed a conditional DC reconstitution experiment to assess whether BLT1 in DCs plays a major role in regulating the pathogenesis of TNBS-induced colitis, and the results indicate that BLT1 deficiency in DCs also significantly reduces disease severity. The mechanistic study demonstrated that BLT1-regulated proinflammatory cytokine production through the Gαi βγ subunit-phospholipase Cβ (PLCβ)-PKC pathway. Notably, we found that treatment with the BLT1 antagonist also reduced the production of proinflammatory cytokines by human peripheral blood DCs. Our findings reveal the critical role of BLT1 in regulating adaptive immunity and TNBS-induced colitis, which further supports BLT1 as a potential drug target for adaptive immunity-mediated IBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269524PMC
http://dx.doi.org/10.1038/s41423-018-0030-2DOI Listing

Publication Analysis

Top Keywords

tnbs-induced colitis
20
blt1
13
production proinflammatory
12
proinflammatory cytokines
12
dendritic cells
8
ibd blt1
8
th1 th17
8
blt1 deficiency
8
deficiency dcs
8
led reduced
8

Similar Publications

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

Objectives: To investigate the effects of asperosaponin VI (AVI) on intestinal epithelial cell apoptosis and intestinal barrier function in a mouse model of Crohn's disease (CD)-like colitis and explore its mechanisms.

Methods: Male C57BL/6 mice with TNBS-induced CD-like colitis were treated with saline or AVI (daily dose 150 mg/kg) by gavage for 6 days. The changes in body weight, colon length, DAI scores, and colon pathologies of the mice were observed, and the expressions of inflammatory factors and tight injunction proteins were detected using ELISA and RT-qPCR.

View Article and Find Full Text PDF

The aim of this study was to investigate the potential role of thymoquinone in the treatment of inflammatory bowel disease (IBD) by examining the effects of various doses of thymoquinone on histopathological changes, oxidative stress, and antioxidant markers in basic stamens in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model in rats. Thirty-two rats were divided into four groups: control, TNBS, thymoquinone-20 (20 mg/kg), and thymoquinone-50 (50 mg/kg) groups. The basic stamens of 32 rats were used for this experiment.

View Article and Find Full Text PDF

Transauricular vagal nerve stimulation suppresses inflammatory responses in the gut and brain in an inflammatory bowel disease model.

J Anat

December 2024

Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM) and Neuropsychiatry Center, Gazi University, Ankara, Türkiye.

Inflammatory bowel disease (IBD) encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a major health problem on a global scale and its treatment is unsatisfactory. We aimed to investigate the effects of transauricular vagal nerve stimulation (tVNS) on inflammation in rats with IBD induced by trinitrobenzene sulfonic acid (TNBS). A total of 36 adult female Sprague-Dawley rats were given TNBS, or vehicle, and tVNS, or sham, every other day for 30 min for 10 days.

View Article and Find Full Text PDF

Various factors play key roles in maintaining intestine homeostasis. Disruption of the balance may lead to intestinal inflammatory diseases (IBDs) and even colorectal cancer (CRC). Loss or gain of function of many key proteins can result in dysregulated intestinal homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!