Patients and rodents with cerebellar damage display ataxic gaits characterized by impaired coordination of limb movements. Here, gait ataxia in mice with a null mutation of the gene for the cerebellin 1 precursor protein (cbln1-null mice) was investigated by kinematic analysis of hindlimb movements during locomotion. The Cbln1 protein is predominately produced and secreted from cerebellar granule cells. The cerebellum of cbln1-null mice is characterized by an 80% reduction in the number of parallel fiber-Purkinje cell synapses compared with wild-type mice. Our analyses identified prominent differences in the temporal parameters of locomotion between cbln1-null and wild-type mice. The cbln1-null mice displayed abnormal hindlimb movements that were characterized by excessive toe elevation during the swing phase, and by severe hyperflexion of the ankles and knees. When recombinant Cbln1 protein was injected into the cerebellum of cbln1-null mice, the step cycle and stance phase durations increased toward those of wild-type mice, and the angular excursions of the knee during a cycle period showed a much closer agreement with those of wild-type mice. These findings suggest that dysfunction of the parallel fiber-Purkinje cell synapses might underlie the impairment of hindlimb movements during locomotion in cbln1-null mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906462 | PMC |
http://dx.doi.org/10.1038/s41598-018-24490-0 | DOI Listing |
Sci Rep
September 2023
Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
Patients with cerebellar stroke display relatively mild ataxic gaits. These motor deficits often improve dramatically; however, the neural mechanisms of this improvement have yet to be elucidated. Previous studies in mouse models of gait ataxia, such as ho15J mice and cbln1-null mice, have shown that they have a dysfunction of parallel fiber-Purkinje cell synapses in the cerebellum.
View Article and Find Full Text PDFBrain Res
September 2018
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address:
Cbln1 is the prototype of a family (Cbln1-Cbln4) of secreted glycoproteins and is essential for normal synapse structure and function in cerebellum by bridging presynaptic Nrxn to postsynaptic Grid2. Here we report the effects of glycosylation on the in vitro receptor binding properties of Cblns. Cbln1, 2 and 4 harbor two N-linked glycosylation sites, one at the N-terminus is in a region implicated in Nrxn binding and the second is in the C1q domain, a region involved in Grid2 binding.
View Article and Find Full Text PDFSci Rep
April 2018
Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
Patients and rodents with cerebellar damage display ataxic gaits characterized by impaired coordination of limb movements. Here, gait ataxia in mice with a null mutation of the gene for the cerebellin 1 precursor protein (cbln1-null mice) was investigated by kinematic analysis of hindlimb movements during locomotion. The Cbln1 protein is predominately produced and secreted from cerebellar granule cells.
View Article and Find Full Text PDFJ Neurosci
November 2016
Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan,
Unlabelled: The cerebellum is thought to be involved in cognitive functions in addition to its well established role in motor coordination and motor learning in humans. Cerebellin 1 (Cbln1) is predominantly expressed in cerebellar granule cells and plays a crucial role in the formation and function of parallel fiber-Purkinje cell synapses. Although genes encoding Cbln1 and its postsynaptic receptor, the delta2 glutamate receptor (GluD2), are suggested to be associated with autistic-like traits and many psychiatric disorders, whether such cognitive impairments are caused by cerebellar dysfunction remains unclear.
View Article and Find Full Text PDFEur J Neurosci
April 2014
Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan; Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!