Global warming events have coincided with turnover of plant species at intervals in Earth history. As mean global temperatures rise, the number, frequency and duration of heat-waves will increase. Ginkgo biloba was grown under controlled climatic conditions at two different day/night temperature regimes (25/20 °C and 35/30 °C) to investigate the impact of heat stress. Photosynthetic CO-uptake and electron transport were reduced at the higher temperature, while rates of respiration were greater; suggesting that the carbon balance of the leaves was adversely affected. Stomatal conductance and the potential for evaporative cooling of the leaves was reduced at the higher temperature. Furthermore, the capacity of the leaves to dissipate excess energy was also reduced at 35/30 °C, indicating that photo-protective mechanisms were no longer functioning effectively. Leaf economics were adversely affected by heat stress, exhibiting an increase in leaf mass per area and leaf construction costs. This may be consistent with the selective pressures experienced by fossil Ginkgoales during intervals of global warming such as the Triassic - Jurassic boundary or Early Eocene Climatic Optimum. The physiological and morphological responses of the G. biloba leaves were closely interrelated; these relationships may be used to infer the leaf economics and photosynthetic/stress physiology of fossil plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6049339PMC
http://dx.doi.org/10.1038/s41598-018-24459-zDOI Listing

Publication Analysis

Top Keywords

global warming
12
leaf construction
8
construction costs
8
heat stress
8
reduced higher
8
higher temperature
8
leaf economics
8
leaf
5
impaired photosynthesis
4
photosynthesis increased
4

Similar Publications

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Boreal forests are heading for an open state.

Proc Natl Acad Sci U S A

January 2025

Environmental Sciences Department, Wageningen University & Research, Wageningen 6708 PB, The Netherlands.

The boreal forest biome is warming four times faster than the global average. Changes so far are moderate, but time lags in responses may transiently maintain forest states which are no longer supported by current environmental conditions. Here, we explore whether tree cover dynamics hint at the state to which the biome may be shifting.

View Article and Find Full Text PDF

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Mental health amid climate crisis: A narrative review.

Indian J Psychiatry

November 2024

Department of Psychiatry, King George's Medical University, Lucknow, Uttar Pradesh, India.

The global community is currently facing a pressing challenge posed by climate change, which is profoundly impacting both human life and biodiversity. This encompasses issues such as rising global temperatures, heightened sea levels, amplified ultraviolet radiation exposure, more frequent and intense natural calamities, and the subsequent health risks. Additionally, mental health is also being impacted by these environmental changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!