Morphological variation is the outward manifestation of development and provides fodder for adaptive evolution. Because of this contingency, evolution is often thought to be biased by developmental processes and functional interactions among structures, which are statistically detectable through forms of covariance among traits. This can take the form of substructures of integrated traits, termed modules, which together comprise patterns of variational modularity. While modularity is essential to an understanding of evolutionary potential, biologists currently have little understanding of its genetic basis and its temporal dynamics over generations. To address these open questions, we compared patterns of craniofacial modularity among laboratory strains, defined mutant lines and a wild population of zebrafish (). Our findings suggest that relatively simple genetic changes can have profound effects on covariance, without greatly affecting craniofacial shape. Moreover, we show that instead of completely deconstructing the covariance structure among sets of traits, mutations cause shifts among seemingly latent patterns of modularity suggesting that the skull may be predisposed towards a limited number of phenotypes. This new insight may serve to greatly increase the evolvability of a population by providing a range of 'preset' patterns of modularity that can appear readily and allow for rapid evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936725PMC
http://dx.doi.org/10.1098/rspb.2017.2671DOI Listing

Publication Analysis

Top Keywords

patterns modularity
8
modularity
6
conserved flexible
4
flexible modularity
4
modularity zebrafish
4
zebrafish skull
4
skull implications
4
implications craniofacial
4
craniofacial evolvability
4
evolvability morphological
4

Similar Publications

With the escalating demand for exploration within confined spaces, bionic design methodologies have attracted considerable attention from researchers, primarily due to the intrinsic limitations of human access to hazardous environments. However, contemporary bionic robots primarily attain linear motion through the axial radial deformation of their body segments, thereby lacking the upright functionality that is characteristic of these organisms. In response to the limitations associated with current bionic earthworm robots concerning upright capability and stiffness modulation, we propose an innovative bionic robot that incorporates upright functionality and programmable stiffness.

View Article and Find Full Text PDF

Opportunistic bacterial pathogens must compete with other bacteria and switch between host- and environment-adapted states. Type VI secretion systems (T6SSs) occur widely in gram-negative bacteria and can efficiently kill neighboring competitors. We determined the distribution of T6SSs across the genus Serratia and observed that a highly conserved antibacterial T6SS is differentially active between closely related clinical isolates of Serratia marcescens.

View Article and Find Full Text PDF

Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface.

View Article and Find Full Text PDF

Traditional cell culture methods face significant limitations in monitoring cell secretions with spatial and temporal precision. Advanced microsystems incorporating biosensors have been developed to address these challenges, but they tend to lack versatility, and their complexity, along with the requirement for specialized equipment, limits their broader adoption. CellStudio offers an innovative, user-friendly solution that exploits Printing and Vacuum Lithography combined with bead-based assays to create modular and tunable cell patterns surrounded by biosensors.

View Article and Find Full Text PDF

The study of the neural circuitry underlying complex mammalian decision-making, particularly cognitive flexibility, is critical for understanding psychiatric disorders. To test cognitive flexibility, as well as potentially other decision-making paradigms involving multimodal sensory perception, we developed FlexRig, an open-source, modular behavioral platform for use in head-fixed mice. FlexRig enables the administration of tasks relying upon olfactory, somatosensory, and/or auditory cues and employing left and right licking as a behavior readout and reward delivery mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!