Background: The public health community readily recognizes flooding and wildfires as climate-related health hazards, but few studies quantify changes in risk of exposure, particularly for vulnerable children and older adults.
Objectives: This study quantifies future populations potentially exposed to inland flooding and wildfire smoke under two climate scenarios, highlighting the populations in particularly vulnerable age groups (≤4 y old and ≥65 y old).
Methods: Spatially explicit projections of inland flooding and wildfire under two representative concentration pathways (RCP8.5 and RCP4.5) are integrated with static (2010) and dynamic (2050 and 2090) age-stratified projections of future contiguous U.S. populations at the county level.
Results: In both 2050 and 2090, an additional one-third of the population will live in areas affected by larger and more frequent inland flooding under RCP8.5 than under RCP4.5. Approximately 15 million children and 25 million older adults could avoid this increased risk of flood exposure each year by 2090 under a moderate mitigation scenario (RCP4.5 compared with RCP8.5). We also find reduced exposure to wildfire smoke under the moderate mitigation scenario. Nearly 1 million young children and 1.7 million older adults would avoid exposure to wildfire smoke each year under RCP4.5 than under RCP8.5 by the end of the century.
Conclusions: By integrating climate-driven hazard and population projections, newly created county-level exposure maps identify locations of potential significant future public health risk. These potential exposure results can help inform actions to prevent and prepare for associated future adverse health outcomes, particularly for vulnerable children and older adults. https://doi.org/10.1289/EHP2594.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071806 | PMC |
http://dx.doi.org/10.1289/EHP2594 | DOI Listing |
Comp Biochem Physiol A Mol Integr Physiol
January 2025
Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America.
Bird nests of coastal or inland breeding birds can temporarily flood during high tides or storms. However, respiratory physiological disruption of such water submersion and implications for post-submergence survival are poorly understood. We hypothesized that respiratory physiological disturbances caused by submersion would be rapidly corrected following return to normal gas exchange across the eggshell, thus explaining survival of nest inundation in the field.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Estuarine and Coastal Research, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China. Electronic address:
With climate change and intensified human activities, disasters such as heavy rainfall, flooding, typhoons, and storm surges are becoming more frequent, posing significant threats to lives, property, and economic development. We propose a method combining extreme value theory and probability distribution to examine the flood severity under the effect of strong human activities. By focusing on the Pearl River Delta (PRD), as one of the most populated areas of China, we quantified changes in the severity of extreme water level for different return levels between 1966 and 1990 and 1991-2016 (with strong human activities), associated with the spatial patterns over the PRD.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
Desert riparian forest vegetation maintains the fragile balance of ecosystems in extreme arid areas. Raising the phreatic water table through efficient ecological water supply is the key to the desert riparian forests in extreme arid areas. The main objective of this study is to explore an innovative framework in which the response of phreatic water table depth (PWTD) to ecological water supply flow (EWSF) can be effectively reflected.
View Article and Find Full Text PDFEnviron Manage
November 2024
Department of Biology, University of Southern Denmark, Odense, Denmark.
Sci Total Environ
December 2024
Faculty of Natural Resources, University of Tehran, Karaj 31585-3314, Iran.
Irrigation has profound influences on carbon (C) and nitrogen (N) stocks in agricultural soil. However, the global-scale irrigation effects on C and N pools in farmland soils, as well as the C: N ratio (C/N), remain unclear. This study integrates existing studies on C and N in irrigated farmland worldwide and investigates the responses of soil C and N concentrations, stocks, and the C/N to irrigation by meta-analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!