ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome.

Metabolism

Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Gachon Medical Research Institute, Gil Medical Center, Incheon 21565, Republic of Korea. Electronic address:

Published: August 2018

Objective: Fructose malabsorption is a common digestive disorder in which absorption of fructose in the small intestine is impaired. An abnormality of the main intestinal fructose transporter proteins has been proposed as a cause for fructose malabsorption. However the underlying molecular mechanism for this remains unclear. In this study, we investigated whether carbohydrate response element-binding protein (ChREBP) plays a role in intestinal fructose absorption through the regulation of genes involved in fructose transport and metabolism and ion transport.

Methods: Wild type (WT) and Chrebp knockout (KO) mice (6 or 8 weeks old) were fed a control diet (55% starch, 15% maltodextrin 10) or high-fructose diet (HFrD, 60% fructose, 10% starch) for 3-12 days. Body weight and food intake were measured, signs of fructose malabsorption were monitored, and the expression of genes involved in fructose transport/metabolism and ion transport was evaluated. Furthermore, transient transfection and chromatin immunoprecipitation were performed to show the direct interaction between ChREBP and carbohydrate response elements in the promoter of Slc2A5, which encodes the fructose transporter GLUT5.

Results: Chrebp KO mice fed the control diet maintained a constant body weight, whereas those fed a HFrD showed significant weight loss within 3-5 days. In addition, Chrebp KO mice fed the HFrD exhibited a markedly distended cecum and proximal colon containing both fluid and gas, suggesting incomplete fructose absorption. Fructose-induced increases of genes involved in fructose transport (GLUT5), fructose metabolism (fructokinase, aldolase B, triokinase, and lactate dehydrogenase), and gluconeogenesis (glucose-6-phosphatase and fructose-1,6-bisphosphatase) were observed in the intestine of WT but not of Chrebp KO mice. Moreover the Na/H exchanger NHE3, which is involved in Na and water absorption in the intestine, was significantly decreased in HFrD-fed Chrebp KO mice. Consistent with this finding, the high-fructose diet-fed Chrebp KO mice developed severe diarrhea. Results of chromatin immunoprecipitation assays showed a direct interaction of ChREBP with the Glut5 promoter, but not the Nhe3 promoter, in the small intestine. Ectopic co-expression of ChREBP and its heterodimer partner Max-like protein X activated the Glut5 promoter in Caco-2BBE cells.

Conclusions: ChREBP plays a key role in the dietary fructose transport as well as conversion into lactate and glucose through direct transcriptional control of genes involved in fructose transport, fructolysis, and gluconeogenesis. Moreover, ablation of Chrebp results in a severe diarrhea in mice fed a high-fructose diet, which is associated with the insufficient induction of GLUT5 in the intestine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400734PMC
http://dx.doi.org/10.1016/j.metabol.2018.04.006DOI Listing

Publication Analysis

Top Keywords

chrebp mice
20
genes involved
16
involved fructose
16
fructose transport
16
fructose
15
chrebp
13
fructose malabsorption
12
mice fed
12
small intestine
8
intestinal fructose
8

Similar Publications

Alternative Splicing Landscape in Mouse Skeletal Muscle and Adipose Tissue: Effects of Intermittent Fasting and Exercise.

J Nutr Biochem

December 2024

Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany. Electronic address:

Alternative splicing contributes to diversify the cellular protein landscape, but aberrant splicing is implicated in many diseases. To which extent mis-splicing contributes to insulin resistance as the causal defect of type 2 diabetes and whether this can be reversed by lifestyle interventions is largely unknown. Therefore, RNA sequencing data from skeletal muscle and adipose tissue of diabetes-susceptible NZO mice treated with or without intermittent fasting and of healthy C57BL/6J mice subjected to exercise were analyzed for alternative splicing differences using Whippet and rMATS.

View Article and Find Full Text PDF

Glucose-sensing ChREBP and MondoA are transcriptional factors involved in lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry.

View Article and Find Full Text PDF

ChREBP-mediated up-regulation of Them1 coordinates thermogenesis with glycolysis and lipogenesis in response to chronic stress.

Sci Signal

December 2024

Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.

Activation of thermogenic brown adipose tissue (BAT) and inducible beige adipose tissue (BeAT) is triggered by environmental or metabolic stimuli, including cold ambient temperatures and nutrient stress. Thioesterase superfamily member 1 (Them1), a long-chain fatty acyl-CoA thioesterase that is enriched in BAT, suppresses acute cold-induced thermogenesis. Here, we demonstrate that expression was induced in BAT and BeAT by the carbohydrate response element binding protein (ChREBP) in response to chronic cold exposure or to the activation of the integrated stress response (ISR) by nutrient excess.

View Article and Find Full Text PDF

Background: Diabetes, a global epidemic, is the leading cause of mortality globally. The aim of this study is to get better understanding of pathophysiology of diabetes.

Methods: Palmitic acid (PA)-treated β-cells, db/db mice and high fat diet (HFD)-fed mouse model of type 2 diabetes were established.

View Article and Find Full Text PDF

Glycogen-storing so-called clear cell kidney tubules (CCTs), precursor lesions of renal cell carcinoma, have been described in diabetic rats and in humans. The lesions show upregulation of the Akt/mTOR-pathway and the related transcription factor carbohydrate responsive element binding protein (ChREBP), which is supposedly pro-oncogenic. We investigated the effect of ChREBP-knockout on nephrocarcinogenesis in streptozotocin-induced diabetic and normoglycemic mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!