The involvement of the Arabidopsis oligopeptide transporter AtOPT6, which was previously shown to take up glutathione (GSH) when expressed in yeast cells or in Xenopus laevis oocytes, in GSH transport was analyzed using opt6 knockout mutant lines. The concentration of GSH in flowers or siliques was lower in opt6 mutants relative to wild-type plants, suggesting involvement of AtOPT6 in long-distance transport of GSH. The GSH concentration in phloem sap was similar between opt6 mutants and wild-type plants. These results, combined with earlier reports showing expression of AtOPT6 in the vascular bundle, especially in the cambial zone, suggest that AtOPT6 functions to transport GSH into cells surrounding the phloem in sink organs. The opt6 mutant plants showed delayed bolting, implying the importance of AtOPT6 for regulation of the transition from vegetative to reproductive growth. After cadmium (Cd) treatment, the concentration of the major phytochelatin PC2 was lower in flowers in the opt6 mutants and Cd was accumulated in roots of opt6 mutant plants compared with wild-type plants. These results suggest that AtOPT6 is likely to be involved in transporting GSH, PCs and Cd complexed with these thiols into sink organs.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcy074DOI Listing

Publication Analysis

Top Keywords

opt6 mutants
12
wild-type plants
12
long-distance transport
8
transport gsh
8
sink organs
8
opt6 mutant
8
mutant plants
8
atopt6
7
gsh
7
opt6
6

Similar Publications

Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals.

View Article and Find Full Text PDF

The involvement of the Arabidopsis oligopeptide transporter AtOPT6, which was previously shown to take up glutathione (GSH) when expressed in yeast cells or in Xenopus laevis oocytes, in GSH transport was analyzed using opt6 knockout mutant lines. The concentration of GSH in flowers or siliques was lower in opt6 mutants relative to wild-type plants, suggesting involvement of AtOPT6 in long-distance transport of GSH. The GSH concentration in phloem sap was similar between opt6 mutants and wild-type plants.

View Article and Find Full Text PDF

AtOPT6 transports glutathione derivatives and is induced by primisulfuron.

Plant Physiol

July 2004

Unité Mixte de Recherches, Centre National de la Recherche Scientifique 6161, Transport des Assimilats, Laboratoire de Physiologie, Biochimie et Biologie Moléculaire Végétales, Bâtiment Botanique, Poitiers Cédex, France.

The oligopeptide transporter (OPT) family contains nine members in Arabidopsis. While there is some evidence that AtOPTs mediate the uptake of tetra- and pentapeptides, OPT homologs in rice (Oryza sativa; OsGT1) and Indian mustard (Brassica juncea; BjGT1) have been described as transporters of glutathione derivatives. This study investigates the possibility that two members of the AtOPT family, AtOPT6 and AtOPT7, may also transport glutathione and its conjugates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!