Background: Intradialytic hypotension is a clinically significant problem, however, the hemodynamics that underlie ultrafiltration and consequent hypotensive episodes has not been studied comprehensively.

Methods: Intradialytic cardiac output, cardiac power and peripheral resistance changes from pretreatment measurements were evaluated using a novel regional impedance cardiographic device (NICaS, NI Medical, Peta Tikva, Israel) in 263 hemodialysis sessions in 54 patients in dialysis units in the USA and Brazil with the goal of determining the various hemodynamic trends as blood pressure decreases.

Results: Hypotensive episodes occurred in 99 (13.5%) of 736 intra- and postdialytic evaluations. The hemodynamic profiles of the episodes were categorized: (i) The cardiac power index significantly decreased in 35% of episodes by 36%, from 0.66 [95% confidence interval (CI) 0.60-0.72] to 0.43 (95% CI 0.37-0.48) [w/m2] with a small reduction in the total peripheral resistance index. (ii) The total peripheral resistance index significantly decreased in 37.4% of episodes by 33%, from 3342 (95% CI 2824-3859) to 2251 (95% CI 1900-2602) [dyn × s/cm5 × m2] with a small reduction in the cardiac power index. (iii) Both the cardiac power index and total peripheral resistance index significantly decreased in 27.3% of episodes, the cardiac power index by 25% from 0.63 (95% CI 0.57-0.70) to 0.48 (95% CI 0.42-0.53) [w/m2] and the total peripheral resistance index by 23% from 2964 (95% CI 2428-3501) to 2266 (95% CI 1891-2642).

Conclusions: The hemodynamic profiles clearly define specific hemodynamic mechanisms of cardiac power reduction and/or vasodilatation as underlying intradialytic hypotensive episodes. A reduction in cardiac power (reduction of both blood pressure and cardiac output) could be the result of preload reduction due to a high ultrafiltration rate with not enough refilling or low target weight. A reduction in peripheral resistance (reduction in blood pressure and increase in cardiac output) could be the result of relative vasodilatation as arteries do not contract to compensate for volume reduction due to autonomous dysfunction. As both phenomena are independent, they may appear at the same time. Based on these results, a reduction of ultrafiltration rate and an increase in target weight to improve preload or immediate therapeutic actions to increase peripheral resistance are rational measures that could be taken to maintain blood pressure and prevent hypotensive ischemic complications in dialysis patients.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfy048DOI Listing

Publication Analysis

Top Keywords

cardiac power
28
peripheral resistance
28
blood pressure
16
total peripheral
16
hypotensive episodes
12
cardiac output
12
cardiac
10
reduction
10
intradialytic hypotension
8
hemodynamic profiles
8

Similar Publications

Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.

View Article and Find Full Text PDF

The coronavirus disease 2019 pandemic has underscored the limitations of traditional diagnostic methods, particularly in ensuring the safety of healthcare workers and patients during infectious outbreaks. Smartphone-based digital stethoscopes enhanced with artificial intelligence (AI) have emerged as potential tools for addressing these challenges by enabling remote, efficient, and accessible auscultation. Despite advancements, most existing systems depend on additional hardware and external processing, increasing costs and complicating deployment.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.

View Article and Find Full Text PDF

Background: Stress hyperglycaemia ratio (SHR) has been reported to be independently and significantly associated with various adverse cardiovascular events as well as mortality. Moreover, in-hospital heart failure following acute myocardial infarction has been demonstrated to account for majority of all heart failure (HF) cases with anterior myocardial infarction showing higher rates of HF. However, the association between SHR and in-hospital HF following an anterior ST-elevation myocardial infarction (STEMI) has not been reported earlier.

View Article and Find Full Text PDF

Purpose: This study aimed to analyze the competitive demands of mountain running races of varying lengths.

Methods: Sixty-six male athletes competed in Vertical race (∼3 km and ∼1000 m of total elevation change), Sky race (∼25 km and ∼3000 m of total elevation change), and SkyUltra race (∼80 km and ∼9000 m of total elevation change). Exercise intensity and competition load (TL) were assessed using running power, heart rate, and rating of perceived exertion (RPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!