A kinetic study on the reactions of the cumyloxyl radical (CumO) with a series of alkanols and alkanediols has been carried out. Predominant hydrogen atom transfer (HAT) from the α-C-H bonds of these substrates, activated by the presence of the OH group, is observed. The comparable k values measured for ethanol and 1-propanol and the increase in k measured upon going from 1,2-diols to structurally related 1,3- and 1,4-diols is indicative of β-C-H deactivation toward HAT to the electrophilic CumO, determined by the electron-withdrawing character of the OH group. No analogous deactivation is observed for the corresponding diamines, in agreement with the weaker electron-withdrawing character of the NH group. The significantly lower k values measured for reaction of CumO with densely oxygenated methyl pyranosides as compared to cyclohexanol derivatives highlights the role of β-C-H deactivation. The contribution of torsional effects on reactivity is evidenced by the ∼2-fold increase in k observed upon going from the trans isomers of 4- tert-butylcyclohexanol and 1,2- and 1,4-cyclohexanediol to the corresponding cis isomers. These results provide an evaluation of the role of electronic and torsional effects on HAT reactions from alcohols and diols to CumO, uncovering moreover β-C-H deactivation as a relevant contributor in defining site selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b00562DOI Listing

Publication Analysis

Top Keywords

β-c-h deactivation
16
hydrogen atom
8
atom transfer
8
alkanols alkanediols
8
cumyloxyl radical
8
values measured
8
electron-withdrawing character
8
character group
8
torsional effects
8
deactivation
5

Similar Publications

Leveraging Multivalent Assembly towards High-Temperature Liquid-Phase Phosphorescence.

Angew Chem Int Ed Engl

January 2025

Ningbo Institute of Materials Technology and Engineering CAS: Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering, Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, CHINA.

High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy to achieve high-temperature liquid-phase phosphorescence (HTLP). The supramolecular assembly of multivalent modules leads to extremely robust hydrogen-bonding networks, which firmly immobilize the organic phosphors and protect triplet excitons from annihilation in high-temperature polar media, resulting in excellent HTLP emission.

View Article and Find Full Text PDF

Ground-level ozone (O) can infiltrate indoor environments, severely impacting the environment and human health. Moisture-induced catalyst deactivation is a major challenge in catalytic ozone removal. MOF-template-derived heterojunctions supported by carbon materials can prevent chemisorption of water vapor at active sites.

View Article and Find Full Text PDF

Disentangling activity-stability trade-off in the catalytic degradation of malodorous sulfur-containing VOCs driven by active sites' self-dynamic evolution.

J Hazard Mater

December 2024

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650050, PR China; Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Key Laboratory of Yunnan Province for Synthesizing Sulfur-containing Fine Chemicals, The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China. Electronic address:

The catalytic degradation of malodorous sulfur-containing volatile organic compounds (S-VOCs), especially methanethiol (CHSH), faces an enormous challenge in striking a balance between activity and stability. Herein, we develop the time-tandem and spatial-extended strategy for synthesizing t-MoO/meso-SiO nano-reactor-type catalysts and reveal the migration and transformation behaviors of both carbon and sulfur species at the mesoscopic scale to break the catalytic CHSH activity and stability trade-off. The dynamic evolution of active centers from initial oxygen sites and acid sites to sulfur vacancies in MoS during the reaction process as well as the formation of a new dimethyl disulfide (CHSSCH) reaction pathway are identified as the main reason for the catalysts' superior activity and sulfur resistance.

View Article and Find Full Text PDF

CRISPR/Cas13X-assisted programmable and multiplexed translation regulation for controlled biosynthesis.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China.

Developing efficient gene regulation tools is essential for optimizing microbial cell factories, but most existing tools only modulate gene expression at the transcriptional level. Regulation at the translational level provides a faster dynamic response, whereas developing a programmable, efficient and multiplexed translational regulation tool remains a challenge. Here, we have developed CRISPRi and CRISPRa systems based on hfCas13X that can regulate gene translation in Bacillus subtilis.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is known for its high incidence, disability, and mortality, and there is an urgent need to investigate the pathophysiological mechanisms and develop novel treatment strategies.

Objectives: We aimed to investigate the mechanisms of the novel circMap2k1/miR-135b-5p/Pidd1 axis in the treatment of IS progression with fluoxetine.

Methods: The middle cerebral artery occlusion (MCAO) model was done in adult male Sprague-Dawley (SD) rats and followed by fluoxetine treatment and the injection of adeno-associated virus (AAV)-sh-ctr and AAV-sh-circMap2k1 into the bilateral hippocampal tissues of rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!