Current breeding relies mostly on random mutagenesis and recombination to generate novel genetic variation. However, targeted genome editing is becoming an increasingly important tool for precise plant breeding. Using the CRISPR-Cas system combined with the bean yellow dwarf virus rolling circle replicon, we optimized a method for targeted mutagenesis and gene replacement in tomato. The carotenoid isomerase (CRTISO) and phytoene synthase 1 (PSY1) genes from the carotenoid biosynthesis pathway were chosen as targets due to their easily detectable change of phenotype. We took advantage of the geminiviral replicon amplification as a means to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double-strand break (DSB) in the target gene, via homologous recombination (HR). Mutagenesis experiments, performed in the Micro-Tom variety, achieved precise modification of the CRTISO and PSY1 loci at an efficiency of up to 90%. In the gene targeting (GT) experiments, our target was a fast-neutron-induced crtiso allele that contained a 281-bp deletion. This deletion was repaired with the wild-type sequence through HR between the CRISPR-Cas-induced DSB in the crtiso target and the amplified donor in 25% of the plants transformed. This shows that efficient GT can be achieved in the absence of selection markers or reporters using a single and modular construct that is adaptable to other tomato targets and other crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.13932 | DOI Listing |
Exp Hematol Oncol
January 2025
Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.
View Article and Find Full Text PDFBMC Biol
January 2025
Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
Background: Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.
Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan. Electronic address:
The death rate due to liver cancer approaches 2 million annually, the majority is attributed to fibrosis. Currently, there is no efficient, safe, non-toxic, and anti-fibrotic drug available, suggesting room for better drug discovery. The current study aims to evaluate the anti-fibrotic role of reserpine, an alkaloid plant compound against CCl-induced liver fibrosis.
View Article and Find Full Text PDFClin Nutr ESPEN
January 2025
Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, RG6 6DZ, UK; Institute for Food, Nutrition, and Health (IFNH), University of Reading, Reading, RG6 6AP, UK. Electronic address:
Background & Aims: Cardiometabolic traits are complex interrelated traits that result from a combination of genetic and lifestyle factors. This study aimed to assess the interaction between genetic variants and dietary macronutrient intake on cardiometabolic traits [body mass index, waist circumference, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, triacylglycerol, systolic blood pressure, diastolic blood pressure, fasting serum glucose, fasting serum insulin, and glycated haemoglobin].
Methods: This cross-sectional study consisted of 468 urban young adults aged 20 ± 1 years, and it was conducted as part of the Study of Obesity, Nutrition, Genes and Social factors (SONGS) project, a sub-study of the Young Lives study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!