Camel milk attenuates methotrexate-induced kidney injury via activation of PI3K/Akt/eNOS signaling and intervention with oxidative aberrations.

Food Funct

Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia.

Published: May 2018

Methotrexate (MTX) is a classical chemotherapeutic agent with nephrotoxicity as the most disturbing adverse effect. So far, its underlying molecular mechanisms, particularly PI3K/Akt/eNOS transduction, are inadequately explored. Several antioxidant modalities have been characterized to ameliorate MTX-induced renal injury. In this regard, Camel milk (CM) is a natural product with recognized antioxidant and anti-inflammatory features. Thus, the current study aimed to investigate the potential ameliorating effects of CM in MTX-induced kidney injury in rats. Renal tissues were studied in terms of renal injury markers, histopathology, oxidative stress, apoptosis and PI3K/Akt/eNOS signaling. CM was orally administered (10 ml kg-1) and the renal injury was induced by a single i.p. injection of MTX (20 mg kg-1). Interestingly, CM dose-dependently attenuated MTX-triggered increase of BUN and serum creatinine and renal Kim-1 expression and mitigated the renal histopathological changes. CM counteracted renal oxidative stress as manifested by lowering of lipid peroxides, restoration of NOX-1 levels and augmentation of the antioxidant defenses e.g., GSH, SOD, GPx and total antioxidant capacity. With respect to apoptosis, CM curbed the cleavage of PARP and caspase-3, downregulated p53, Bax and Cyt C proapoptotic signals and enhanced Bcl-2 and PCNA levels. In the same context, CM activated the prosurvival PI3K/Akt/eNOS pathway via enhancing PI3K p110, phospho-Akt and phospho-eNOS levels. Equally important, CM preconditioning did not interfere with MTX cytotoxicity in TK-10 or PC-3 cancer cells. Together, the current findings demonstrate, for the first time, the renoprotective effects of CM in MTX-induced kidney injury via activation of PI3K/Akt/eNOS signaling and combating oxidative stress and apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fo00131fDOI Listing

Publication Analysis

Top Keywords

kidney injury
12
pi3k/akt/enos signaling
12
renal injury
12
oxidative stress
12
camel milk
8
injury activation
8
activation pi3k/akt/enos
8
effects mtx-induced
8
mtx-induced kidney
8
stress apoptosis
8

Similar Publications

Introduction: Acute kidney injury involves inflammation and intrinsic renal damage, and is a common complication of severe coronavirus disease 2019 (COVID-19). Baseline chronic kidney disease (CKD) confers an increased mortality risk. We determined the renal long-term outcomes of COVID-19 in patients with baseline CKD, and the risk factors prompting renal replacement therapy (RRT) initiation and mortality.

View Article and Find Full Text PDF

This study is designed to assess the effect of root extract of P. ginseng on kidney tissue injury attributed to cisplatin and its molecular mechanism involved in this process in the AKI rat model. Twenty-four male Wistar rats were randomly allocated into 4 experimental groups including: the control group, the cisplatin group, the extract 100 mg/kg group, and the extract 200 mg/kg group.

View Article and Find Full Text PDF

Association between intraoperative fluid management and postoperative outcomes in living kidney donors: a retrospective cohort study.

Sci Rep

January 2025

Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

Optimal fluid strategy for laparoscopic donor nephrectomy (LDN) remains unclear. LDN has been a domain for liberal fluid management to ensure graft perfusion, but this can result in adverse outcomes due to fluid overload. We compared postoperative outcome of living kidney donors according to the intraoperative fluid management.

View Article and Find Full Text PDF

Induction of sepsis in a rat model by the cecal ligation and puncture technique. Application for the study of experimental acute renal failure.

Methods Cell Biol

January 2025

Renal Physiopathology Laboratory, Department of Nephrology, Instituto Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Department of Physiology, School of Medicine, Universidad Complutense, Madrid, Spain. Electronic address:

Sepsis is a systemic inflammatory response to infection, and its occurrence is associated with a poor prognosis in the context of multiorgan dysfunction syndrome (MODS). Although there are several animal models for the study of its etiology, the cecal ligation and puncture (CLP) model has been considered the "Gold standard" because it shows a high degree of similarity to the progression of human sepsis. Currently, it is one of the most frequently chosen options to search for therapeutic alternatives to diminish the progression and organ damage induced by sepsis.

View Article and Find Full Text PDF

Immune checkpoint inhibitor (ICI) therapy is a cornerstone treatment for many cancers, but it can induce severe immunotoxicity, including acute interstitial nephritis (AIN). Currently, kidney biopsy is required to differentiate ICI-AIN from other causes of acute kidney injury (AKI). However, this invasive approach can lead to morbidity, delayed glucocorticoid treatment for patients with AIN, and unnecessarily prolonged suspension of ICI therapy in non-AIN patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!