Herein, magnetically hollow zein nanoparticles were synthesized and used as a magnetic sorbent for the preconcentration of chlorpyrifos and its analysis by high-performance liquid chromatography (HPLC). Morphology of the sorbent was characterized by transmission electron microscopy (TEM). In this study, the effects of important parameters such as pH of the solution, adsorption and desorption time, type and volume of desorption solvent, and salt addition were investigated. Under optimized experimental conditions, the linear range was from 50 to 2000 μg mL-1, and an LOD of 25 μg L-1 was calculated. The relative standard deviations (RSD) varied from 3.8 to 5.1% (n = 5). The enrichment factors for 50 and 100 μg L-1 samples were calculated as 187 and 210, respectively. The developed method was successfully applied in soil and water samples and showed good extraction recoveries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7an01526g | DOI Listing |
EBioMedicine
November 2024
Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China. Electronic address:
Background: Current embolic agents in transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) encounter instability and easy leakage, discounting TACE efficacy with residual HCC. Moreover, clinical TACE aggravates hypoxia and pro-metastatic microenvironments, rendering patients with HCC poor prognosis.
Methods: Herein, we developed Zein-based embolic agents that harness water-insoluble but ethanol-soluble Zein to encompass doxorubicin (DOX)-loaded mesoporous hollow MnO (HMnO).
Int J Biol Macromol
May 2023
Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China. Electronic address:
Plasmalogens (Pls) as the hydrophobic bioactive compound have shown potential in enhancing neurological disorders. However, the bioavailability of Pls is limited because of their poor water solubility during digestion. Herein, the hollow dextran sulfate/chitosan - coated zein nanoparticles (NPs) loaded with Pls was prepared.
View Article and Find Full Text PDFAntioxidants (Basel)
September 2021
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
Hollow nanoparticles are preferred over solid ones for their high loading capabilities, sustained release and low density. Hollow zein particles are susceptible to aggregation with a slight variation in the ionic strength, pH and temperature of the medium. This study was aimed to fabricate quercetin-loaded hollow zein particles with chitosan and pectin coating to improve their physicochemical stability.
View Article and Find Full Text PDFMaterials (Basel)
June 2021
Institute of Polymers, Composites and Biomaterials, National Research Council, via Paolo Gaifami 18, 95126 Catania, Italy.
Nanoparticles from plant proteins are preferred over carbohydrates and synthetic polymeric-based materials for food, medical and other applications. In addition to their large availability and relatively low cost, plant proteins offer higher possibilities for surface modifications and functionalizing various biomolecules for specific applications. Plant proteins also avoid the immunogenic responses associated with the use of animal proteins.
View Article and Find Full Text PDFInt J Biol Macromol
July 2021
Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA. Electronic address:
The carriers for hydrophobic bioactives have been extensively studied, while those for hydrophilic bioactives are still challenging. The partition of bioactives in the particles depends greatly on their solubility, interaction with carrier materials, as well as structure of carriers. In this study, chitosan-coated hollow zein particles using calcium phosphate as a sacrificing template (CS-HZ) were fabricated to co-encapsulate folic acid (FA) and caffeic acid (CA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!