Advances in the Understanding of the Cannabinoid Receptor 1 - Focusing on the Inverse Agonists Interactions.

Curr Med Chem

Laboratory of Computational Systems Biology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil.

Published: July 2019

Background: Cannabinoid Receptor 1 (CB1) is a membrane protein prevalent in the central nervous system, whose crystallographic structure has recently been solved. Studies will be needed to investigate CB1 complexes with its ligands and its role in the development of new drugs.

Objective: Our goal here is to review the studies on CB1, starting with general aspects and focusing on the recent structural studies, with emphasis on the inverse agonists bound structures.

Methods: We start with a literature review, and then we describe recent studies on CB 1 crystallographic structure and docking simulations. We use this structural information to depict protein-ligand interactions. We also describe the molecular docking method to obtain complex structures of CB 1 with inverse agonists.

Results: Analysis of the crystallographic structure and docking results revealed the residues responsible for the specificity of the inverse agonists for CB 1. Most of the intermolecular interactions involve hydrophobic residues, with the participation of the residues Phe 170 and Leu 359 in all complex structures investigated in the present study. For the complexes with otenabant and taranabant, we observed intermolecular hydrogen bonds involving residues His 178 (otenabant) and Thr 197 and Ser 383 (taranabant).

Conclusion: Analysis of the structures involving inverse agonists and CB 1 revealed the pivotal role played by residues Phe 170 and Leu 359 in their interactions and the strong intermolecular hydrogen bonds highlighting the importance of the exploration of intermolecular interactions in the development of novel inverse agonists.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867325666180417165247DOI Listing

Publication Analysis

Top Keywords

inverse agonists
20
crystallographic structure
12
cannabinoid receptor
8
structure docking
8
complex structures
8
intermolecular interactions
8
residues phe
8
phe 170
8
170 leu
8
leu 359
8

Similar Publications

Purpose: Benzodiazepine receptor agonists (BZRAs), including benzodiazepines (BZDs) and Z drugs, are widely prescribed for anxiety and sleep. Therefore, issues of tolerance, dependence and adverse effects are of concern. Recent studies suggested a potential link between BZRAs and hearing problems.

View Article and Find Full Text PDF

Lipid metabolism disorders are frequently noted in atopic dermatitis (AD) patients, prompting the long-term use of lipid-lowering drugs. However, the causal effects of circulating lipids and different lipid-lowering drugs on the risk of AD are not thoroughly understood. Using publicly available genome-wide association studies (GWAS) summary data from two different cohorts, a series of Mendelian randomization (MR) analyses were conducted to explore the causal effects of genetically proxied circulating lipids and lipid-lowering drugs on the risk of AD.

View Article and Find Full Text PDF

Middle Eastern countries, such as the United Arab Emirates and Oman, are affected by frequent dust storms and extreme hot climatic conditions, which can exacerbate respiratory conditions. These environmental factors are particularly injurious to asthmatic patients, as they can aggravate small airway disease (SAD), leading to increased morbidity and healthcare challenges. The evaluation of maximal mid-expiratory flow (MEF-25) as a diagnostic and therapeutic tool for early-stage small airway dysfunction is of significant clinical importance, particularly in hot and arid metropolitan environments where dusty conditions exacerbate pulmonary issues.

View Article and Find Full Text PDF

The cannabinoid receptor 1 (CBR) regulates synaptic transmission in the central nervous system, but also has important roles in the peripheral organs controlling cellular metabolism. While earlier generations of brain penetrant CBR antagonists advanced to the clinic for their effective treatment of obesity, such molecules were ultimately shown to exhibit negative effects on central reward pathways that thwarted their further therapeutic development. The peripherally restricted CBR inverse agonists MRI-1867 and MRI-1891 represent a new generation of compounds that retain the metabolic benefits of CBR inhibitors while sparing the negative psychiatric effects.

View Article and Find Full Text PDF

Cardiovascular Events in Adults with Type 2 Diabetes and ASCVD Initiating Once-Weekly Semaglutide vs DPP-4is in the USA.

Diabetes Ther

December 2024

Department of Neurology, Center for Brain and Mind Health, Yale School of Medicine, Yale University, 15 York St, New Haven, CT, 06510, USA.

Introduction: Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have demonstrated cardiovascular benefits in trials involving high-risk patients with type 2 diabetes (T2D), while dipeptidyl peptidase 4 inhibitors (DPP-4is) have not. However, DPP-4is are still commonly prescribed in patients with T2D and atherosclerotic cardiovascular disease (ASCVD). This study compared time to occurrence of cardiovascular events, health care resource utilization (HCRU), and medical costs in patients with T2D and ASCVD who initiated once-weekly semaglutide vs a DPP-4i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!