To summarize recent studies on the pathophysiology and preventive strategies for SUDEP. Databases and literature review. Patients with epilepsy have a significantly higher risk of death than the general population. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of sudden death among patients with epilepsy. Despite on-going research, there are still deficits in our knowledge about the mechanisms, genetic factors, and prevention of SUDEP. Current evidence suggests that cardiac arrhythmias, respiratory dysfunction, and brainstem arousal system dysfunction are the major mechanisms of SUDEP, and animal models support the role of neurotransmitters, especially serotonin and adenosine, in pathophysiology of SUDEP. Several mutations in the neurocardiogenic channelopathy genes have been identified as a possible cause of epilepsy and increased SUDEP risk. The lack of awareness that SUDEP can be a potential cause of premature death has been found in several surveys. In addition, medical legal cases demonstrate the need for more education about this condition. Several preventive strategies to reduce SUDEP have been proposed, including effective seizure control, nocturnal supervision, seizure monitoring, devices to protect the airway, and selective serotonin reuptake inhibitors. Further research is needed to determine the efficacy of these interventions. The major mechanisms of SUDEP include cardiac arrhythmias, respiratory dysfunction, and brainstem arousal system dysfunction. Effective control of seizures is the only effective strategy to prevent SUDEP. Other preventive interventions require more research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207454.2018.1466780 | DOI Listing |
Epilepsia
January 2025
Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA.
Objective: This study was undertaken to test the following hypotheses in the Atp1a3 mouse (which carries the most common human ATP1A3 (the major subunit of the neuronal Na/K-adenosine triphosphatase [ATPase]) mutation, D801N): sudden unexpected death in epilepsy (SUDEP) occurs during seizures and is due to terminal apneas in some and due to lethal cardiac arrhythmias in others; and Atp1a3 mice have central cardiorespiratory dysregulation and abnormal respiratory drive.
Methods: Comparison was made of littermate wild-type and Atp1a3 groups using (1) simultaneous in vivo video-telemetry recordings of electroencephalogram, electrocardiogram, and breathing; (2) whole-body plethysmography; and (3) hypoglossal nerve recordings.
Results: In Atp1a3 mice, (1) SUDEP consistently occurred during seizures that were more severe than preterminal seizures; (2) seizure clustering occurred in periods preceding SUDEP; (3) slowing of breathing rate (BR) and heart rate was observed preictally before preterminal and terminal seizures; and (4) the sequence during terminal seizures was as follows: bradypnea with bradycardia/cardiac arrhythmias, then terminal apnea, followed by terminal cardiac arrhythmias.
J Physiol
January 2025
Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.
Sudden unexpected death in epilepsy (SUDEP) is a devastating complication of epilepsy with possible sex-specific risk factors, although the exact relationship between sex and SUDEP remains unclear. To investigate this, we studied Kcna1 knockout (Kcna1) mice, which lack voltage-gated Kv1.1 channel subunits and are widely used as a SUDEP model that mirrors key features in humans.
View Article and Find Full Text PDFBackground: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.
View Article and Find Full Text PDFEpilepsia
January 2025
Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Objective: Epilepsy surgery outcomes tend to be judged by the percentage in seizure reduction without considering the effect on specific seizure types, particularly tonic-clonic seizures, which produce the greatest morbidity and mortality. We assess how often focal to bilateral tonic-clonic seizures (BTCS) stop and how often they appear de novo after epilepsy surgery.
Methods: Analysis of a prospectively maintained epilepsy surgery database between 1986 and 2022 that characterizes the burden of BTCS after resective epilepsy surgery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!