Arbuscular mycorrhizal fungi (AMF) play vital roles in sustaining soil productivity and plant communities. However, adaption and differentiation of AMF in response to commonly used fertilization remain poorly understood. In this study, we showed that the AMF community composition was primarily driven by soil physiochemical changes associated with chronic inorganic and organic fertilization of 37 years in Mollisols. High-throughput sequencing indicated that inorganic fertilizer negatively affected AMF diversity and richness, implying a reduction of mutualism in plant-AMF symbiosis; however, a reverse trend was observed for the application of inorganic fertilizer combined with manure. With regards to AMF community composition, order Glomerales was dominant, but varied significantly among different fertilization treatments. All fertilization treatments decreased family Glomeraceae and genus Funneliformis, while Rhizophagus abundance increased. Plant-growth-promoting-microorganisms of family Claroideoglomeraceae and genus Claroideoglomus were stimulated by manure application, and likely benefited pathogen suppression and phosphorus (P) acquisition. Family Gigasporaceae and genus Gigaspora were negatively correlated with available P in soil. Additionally, redundancy analysis further suggested that soil available P, organic matter and pH were the most important factors in shaping AMF community composition. These results provide strong evidence for niche differentiation of phylogenetically distinct AMF populations under different fertilization regimes. Manure likely contributes to restoration and maintenance of plant-AMF symbiosis, and the balanced fertilization would favor the growth of beneficial AMF communities as one optimized management in support of sustainable agriculture in Mollisols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904092 | PMC |
http://dx.doi.org/10.1186/s13568-018-0587-2 | DOI Listing |
BMC Plant Biol
January 2025
College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China.
To investigate the effects of row ratio configurations on intercropping advantages and related rhizosphere microbial communities, a field experiment involving five treatments of different rows of broomcorn millet, i.e., P1M1 (1 row of broomcorn millet intercropped with 1 row of alfalfa), P2M3, P1M2, P1M3 and broomcorn millet alone (SP), was conducted on the Loess Plateau of China.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
Arbuscular mycorrhizal fungi (AMF) form extensive symbiotic relationships with plants, which are critical for plant-driven biogeochemical cycles and ecosystem functions. Grazing and mowing, which are common grassland utilization patterns globally, significantly alter plant community characteristics as well as soil nutrients and structure, thereby potentially influencing AMF communities. However, the effects of these grassland managements on AMF community structure and ecological processes remain unclear.
View Article and Find Full Text PDFImeta
December 2024
Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences Beijing China.
Elevated CO (eCO) stimulates productivity and nutrient demand of crops. Thus, comprehensively understanding the crop phosphorus (P) acquisition strategy is critical for sustaining agriculture to combat climate changes. Here, wheat ( L) was planted in field in the eCO (550 µmol mol) and ambient CO (aCO, 415 µmol mol) environments.
View Article and Find Full Text PDFMycorrhiza
December 2024
African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco.
Arbuscular mycorrhizal fungi (AMF) are the most widespread plant symbionts associated with plant roots, and theyperform numerous functions that contribute to plants' health and physiology. However, there are many knowledge gaps in how the interactions between AMF and root mycobiomes influence the performance of the host plants. To this end, we inoculated a local chickpea cultivar grown in agricultural soil under semi-controlled conditions with Rhizophagus irregularis.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
USDA-ARS Tree Fruit Research Laboratory, Wenatchee, Washington, USA.
Arbuscular mycorrhizal fungi (AMF) are promoted as commercial bioinoculants for sustainable agriculture. Little is known, however, about the survival of AMF inoculants in soil and their impacts on native or pre-established AMF communities in root tissue. The current study was designed to assess the stability of pre-existing/nursery-derived AMF in apple rootstocks after being planted into soil containing a known community of AMF with a limited number of species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!