Energy and environmental impact analysis of rice cultivation and straw management in northern Thailand.

Environ Sci Pollut Res Int

The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangkok, Thailand.

Published: June 2018

Rice cultivation and energy use for rice production can produce the environmental impacts, especially related to greenhouse gas (GHG) emissions. Also, rice straw open burning by farmers generally practiced after harvesting stage in Thailand for removing the residues in the rice field is associated with emissions of air pollutants, especially particulate matter formation that affects human health and global climate. This study assessed the environmental burdens, consisting of GHG emissions, energy use, and particulate matter formation (PM10), from rice cultivation in Thailand by life cycle assessment (LCA) and compared the environmental burdens of rice straw management scenarios: open burning, incorporation into soil, and direct combustion for electricity generation. The data were collected from the rice production cooperative in Chiang Mai province, northern Thailand, via onsite records and face-to-face questionnaires in 2016. The environmental impacts were evaluated from cradle-to-farm gate. The results showed that the total GHG emissions were 0.64 kg CO-eq per kilogram of paddy rice, the total energy use was 1.80 MJ per kilogram of paddy rice and the PM10 emissions were 0.42 g PM10-eq per kilogram of paddy rice. The results of rice straw management scenarios showed that rice straw open burning had the highest GHG and PM10 emissions. However, rice straw utilization by incorporation into soil and direct combustion for electricity generation could reduce these impacts substantially.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-1961-yDOI Listing

Publication Analysis

Top Keywords

rice straw
20
rice
14
rice cultivation
12
straw management
12
ghg emissions
12
open burning
12
kilogram paddy
12
paddy rice
12
northern thailand
8
rice production
8

Similar Publications

Engineering the biosynthetic pathway of bacterial cellulose in rice to improve the performance of straw-derived paper.

Plant Commun

January 2025

Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding,China, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms ,Ministry of Agriculture and Rural Affairs, China. Electronic address:

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB).

View Article and Find Full Text PDF

Effects of Different Nitrogen Fertilizer Application Rates on Soil Microbial Structure in Paddy Soil When Combined with Rice Straw Return.

Microorganisms

January 2025

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

Metagenomic sequencing of the microbial soil community was used to assess the effect of various nitrogen fertilizer treatments in combination with constant rice straw return to the soil in the tiller layer of Northeast China's black paddy soil used for rice production. Here, we investigated changes in the composition, diversity, and structure of soil microbial communities in the soil treated with four amounts of nitrogen fertilizers (53, 93, 133, and 173 kg/ha) applied to the soil under a constant straw return of 7500 kg/ha, with a control not receiving N. The relationships between soil microbial community structure and soil physical and chemical properties were determined.

View Article and Find Full Text PDF

With the increasing demand for enhancing livestock production performance and optimizing feed efficiency, this study aimed to investigate the effects of fermented total mixed ration (FTMR) containing different proportions of rice straw and sheath and leaves of on systemic nutrient metabolism and oxidative metabolism under host genetic regulation and on growth performance of heifers. A total of 157 heifers aged 7-8 months were selected, and their hair was collected for whole-genome sequencing. They were randomly assigned into four groups of 18 to 21 cattle each and fed FTMR containing varying levels of rice straw (21% in LSF, 28% in MSF, 35% in HSF) or 31% sheath and leaves of (ZF) for a two-month period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!