AI Article Synopsis

  • Myocardial scar is linked to negative cardiac outcomes, and the Selvester QRS-score helps estimate it from ECG, but manual calculations are challenging.
  • An automatically computed QRS-score was evaluated for its diagnostic and prognostic value in identifying myocardial scar in over 2,700 patients with suspected myocardial ischemia and in 1,151 individuals with suspected acute heart failure.
  • Results showed that higher QRS-scores indicated larger myocardial scars, with significant associations between scores and one-year mortality rates in acute heart failure patients, suggesting the automatic QRS-score is a useful, non-invasive tool for assessing cardiac risk.

Article Abstract

Background: Myocardial scar is associated with adverse cardiac outcomes. The Selvester QRS-score was developed to estimate myocardial scar from the 12-lead ECG, but its manual calculation is difficult. An automatically computed QRS-score would allow identification of patients with myocardial scar and an increased risk of mortality.

Objectives: To assess the diagnostic and prognostic value of the automatically computed QRS-score.

Methods: The diagnostic value of the QRS-score computed automatically from a standard digital 12-lead was prospectively assessed in 2742 patients with suspected myocardial ischemia referred for myocardial perfusion imaging (MPI). The prognostic value of the QRS-score was then prospectively tested in 1151 consecutive patients presenting to the emergency department (ED) with suspected acute heart failure (AHF).

Results: Overall, the QRS-score was significantly higher in patients with more extensive myocardial scar: the median QRS-score was 3 (IQR 2-5), 4 (IQR 2-6), and 7 (IQR 4-10) for patients with 0, 5-20 and > 20% myocardial scar as quantified by MPI (p < 0.001 for all pairwise comparisons). A QRS-score ≥ 9 (n = 284, 10%) predicted a large scar defined as > 20% of the LV with a specificity of 91% (95% CI 90-92%). Regarding clinical outcomes in patients presenting to the ED with symptoms suggestive of AHF, mortality after 1 year was 28% in patients with a QRS-score ≥ 3 as opposed to 20% in patients with a QRS-score < 3 (p = 0.001).

Conclusions: The QRS-score can be computed automatically from the 12-lead ECG for simple, non-invasive and inexpensive detection and quantification of myocardial scar and for the prediction of mortality. TRIAL-REGISTRATION: http://www.clinicaltrials.gov . Identifier, NCT01838148 and NCT01831115.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00392-018-1253-zDOI Listing

Publication Analysis

Top Keywords

myocardial scar
24
automatically computed
12
myocardial
8
patients
8
patients presenting
8
scar
6
qrs-score
6
automatically
4
computed ecg
4
ecg algorithm
4

Similar Publications

Background: Myocardial fibrosis is a key healing response after myocardial infarction driven by activated fibroblasts. Gallium-68-labeled fibroblast activation protein inhibitor ([Ga]-FAPI) is a novel positron-emitting radiotracer that binds activated fibroblasts.

Objectives: The aim of this study was to investigate the intensity, distribution, and time-course of fibroblast activation after acute myocardial infarction.

View Article and Find Full Text PDF

Aims: Recurrent acute myocardial infarction (RE-AMI) is a frequent complication after STEMI, and its association with stent thrombosis can be life-threatening. Intravenous atorvastatin (IV-atorva) administration during AMI has been shown to limit infarct size and adverse cardiac remodeling. We determined by cardiac magnetic resonance (CMR) whether the cardioprotection exerted by IV-atorva at the index AMI event translates into a better prognosis upon RE-AMI in dyslipidemic pigs.

View Article and Find Full Text PDF

Background: Left ventricular (LV) myocardial contraction patterns can be assessed using LV mechanical dispersion (LVMD), a parameter closely associated with electrical activation patterns. Despite its potential clinical significance, limited research has been conducted on LVMD following myocardial infarction (MI). This study aims to evaluate the predictive value of cardiac magnetic resonance (CMR)-derived LVMD for adverse clinical outcomes and to explore its correlation with myocardial scar heterogeneity.

View Article and Find Full Text PDF

Aim: to assess the relation of focal and diffuse left ventricular (LV) fibrosis to left bundle branch block (LBBB).

Materials And Methods: 60 patients with dilated cardiomyopathy and LBBB (DCM-LBBB), 50 DCM-nonLBBB patients, 15 patients with LBBB and structurally normal heart (idiopathic LBBB) and 10 healthy volunteers (HV) underwent cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE). LGE LV images were post-proceed for core scar (CS) and gray zone (GZ) calculation.

View Article and Find Full Text PDF

Artifacts at Cardiac MRI: Imaging Appearances and Solutions.

Radiographics

January 2025

From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).

Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!