The development of a method for the Pd(ii)-catalyzed denitrogenative coupling of arylhydrazines to give functionalized biaryls in good yield, using aryl bromides or aryl iodides as convenient and inexpensive aryl sources, is reported. High functional group tolerance is demonstrated for electronically distinct arylhydrazines as well as aryl halides. The desired products were isolated in good to excellent yields for 58 examples. Control experiments and mechanism studies revealed that the transformation undergoes a base-promoted Pd-catalyzed process.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8ob00305jDOI Listing

Publication Analysis

Top Keywords

aryl halides
8
aryl
5
denitrogenative palladium-catalyzed
4
palladium-catalyzed coupling
4
coupling aryl
4
halides arylhydrazines
4
arylhydrazines mild
4
mild conditions
4
conditions development
4
development method
4

Similar Publications

Isolated Neutral Organic Radical Unveiled Solvent-Radical Interaction in Highly Reducing Photocatalysis.

Angew Chem Int Ed Engl

January 2025

The University of Arizona, Chemistry and BioChemistry, 1306 E University Blvd, CSML 638, 85719, Tucson, UNITED STATES OF AMERICA.

Diffusion-limited kinetics is a key mechanistic debate when consecutive photoelectron transfer (conPET) is discussed in photoredox catalysis. In-situ generated organic photoactive radicals can access catalytic systems as reducing as alkaline metals that can activate remarkably stable bonds. However, in many cases, the extremely short-lived transient nature of these doublet state open-shell species has led to debatable mechanistic studies, hindering adoption and development.

View Article and Find Full Text PDF
Article Synopsis
  • This study presents a new method for upgrading natural asphalt into a catalyst through a process called metal-free sonobromination.
  • The method involves creating a palladium complex on natural asphalt, which is then used as a recoverable catalyst in the Suzuki reaction for synthesizing biphenyl derivatives.
  • The process is environmentally friendly, uses a green solvent, and showcases the potential for sustainable materials development from renewable resources.
View Article and Find Full Text PDF

The catalytic potential of flexible metal-organic frameworks (MOFs) remains underexplored, particularly in solution-phase reactions. This study employs MIL-53(Cr), a prototypical "breathing" MOF capable of structural adaptation via pore size modulation, as a photocatalyst for the dehalogenation of aryl halides. Powder X-ray diffraction and pair distribution function analyses reveal that organic solvents influence pore opening, while substrates and products dynamically adjust the framework configuration during catalysis.

View Article and Find Full Text PDF

Three-component diels-alder reaction through palladium carbene migratory insertion enabled dearomative C(sp)-H bond activation.

Nat Commun

December 2024

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.

Owning to the versatile nature in participation of Diels-Alder (D-A) reactions, the development of efficient approaches to generate active ortho-quinodimethanes (o-QDMs) has gained much attention. However, a catalytic method involving coupling of two readily accessible components to construct o-QDMs is lacking. Herein, we describe a palladium carbene migratory insertion enabled dearomative C(sp)-H activation to form active o-QDM species through the cross-coupling of N-tosylhydrazones with aryl halides.

View Article and Find Full Text PDF

Hydroalkylation of terminal alkynes is a powerful approach to the synthesis of disubstituted alkenes. However, its application is largely unexplored in the synthesis of α,β-unsaturated carbonyls, which are common among synthetic intermediates and biologically active molecules. The thermodynamically less stable -isomers of activated alkenes have been particularly challenging to access because of their propensity for isomerization and the paucity of reliable -selective hydroalkylation methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!