Rather than maximizing intake of available macronutrients, insects increase intake of some nutrients and restrict intake of others. This selective consumption influences, and potentially optimizes, developmental time, reproduction and lifespan of the organism. Studies so far have focused on discriminating between protein and carbohydrate uptake and the consequences on fitness components at different life stages. However, it is largely unknown whether and how the developmental diets, which may entail habitat-specific nutrient restrictions, affect selective consumption in adults. We show that adult female opt for the same protein to carbohydrate (P:C) ratio regardless of their developmental diet (P:C ratio of 1:1, 1:4 or 1:8). In contrast, males choose a diet that makes up for deficiencies; when protein is low during development, males increase protein consumption despite this being detrimental to starvation resistance. The sexual dimorphism in foraging choice could be due to the different energetic requirements of males and females. To investigate the effect of developmental diet on lifespan once an adult nutritional environment has been established, we also conducted a no-choice experiment. Here, adult lifespan increased as P:C ratio decreased, irrespective of developmental diet, thus demonstrating a 'cancelling out' effect of the nutritional environment experienced during early life stages. Our study provides novel insights into how developmental diet is linked to adult diet by presenting evidence for sexual dimorphism in foraging choice as well as life-stage dependency of diet on lifespan.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.175554DOI Listing

Publication Analysis

Top Keywords

developmental diet
20
foraging choice
12
diet
8
selective consumption
8
protein carbohydrate
8
life stages
8
sexual dimorphism
8
dimorphism foraging
8
diet lifespan
8
nutritional environment
8

Similar Publications

The neonate respiratory microbiome.

Acta Physiol (Oxf)

February 2025

Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.

Over the past two decades, it has become clear that against earlier assumptions, the respiratory tract is regularly populated by a variety of microbiota even down to the lowest parts of the lungs. New methods and technologies revealed distinct microbiome compositions and developmental trajectories in the differing parts of the respiratory tract of neonates and infants. In this review, we describe the current understanding of respiratory microbiota development in human neonates and highlight multiple factors that have been identified to impact human respiratory microbiome development including gestational age, mode of delivery, diet, antibiotic treatment, and early infections.

View Article and Find Full Text PDF

Introduction: Adolescence is a phase of life marked by rapid growth. Adequate nutrition is essential during this developmental stage, leading to significant physical performance, improved cognitive ability, and productivity. Improving adolescent girls' nutrition is crucial for breaking the intergenerational cycle of malnutrition, but research in Pakistan has largely focused on children under five and pregnant women, often neglecting this vulnerable group.

View Article and Find Full Text PDF

Background: Celiac disease is a chronic autoimmune condition requiring lifelong adherence to a gluten-free diet, particularly in children, to prevent nutritional deficiencies and developmental delays.

Objective: The objective of study was to evaluate the effects of early nutritional intervention on the management and health outcomes of children diagnosed with celiac disease.

Methodology: A prospective, longitudinal cohort study was conducted over two years (July 2019-July 2021).

View Article and Find Full Text PDF

Favorable response to ketogenic diet therapy in a patient with -related epilepsy.

Epilepsy Behav Rep

March 2025

Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, United States.

Dynein Cytoplasmic 1 Heavy chain 1 (-related disorders are a spectrum of conditions including neurodevelopmental disorders, congenital brain malformations, and neuromuscular diseases. These clinical features may co-occur, with four main disease entities including epilepsy with developmental epileptic encephalopathy such as infantile epileptic spasms syndrome (IESS) and Lennox-Gastaut syndrome (LGS), axonal Charcot-Marie-Tooth disease type 2O, spinal muscular atrophy with lower extremity-predominance (SMALED), and congenital cortical malformations. Epilepsy associated with this disorder often becomes drug-resistant and requires multiple medications and, in some cases, non-pharmacological treatments.

View Article and Find Full Text PDF

Maternal obesity predisposes offspring to type 2 diabetes (T2D) through a direct chronic effect of lipids on pancreatic β-cell neogenesis. β-cells produce FABP3 to bind and metabolize fatty acids. Ferulic acid (FA) is a natural product that may inhibit fatty acids' binding to FABP3, preventing their toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!