Background: Thyroid-associated orbitopathy (TAO) causes inflammatory fibroproliferation of periocular connective tissues. We compared adipose tissue-derived stem/stromal cells (ADSCs) from three adipose depots of each patient with TAO on mesenchymal, myofibrogenic, adipogenic properties and associated hyaluronan (HA) synthesis.

Methods: ADSCs were generated from periocular (eyelid, orbital) and subcutaneous (abdominal) adipose tissues of three patients with TAO. Mesenchymal markers were characterised by reverse transcription-PCR and immunofluorescent staining. A 3-week adipogenic induction was evaluated by Nile red staining and quantitative PCR (qPCR) of peroxisome proliferator-activated receptor (PPARγ), adiponectin and hyaluronan synthase (HAS)-2. A 7-day myofibrogenic induction was assayed by immunofluorescent staining and qPCR of α-smooth muscle actin (α-SMA).

Results: ADSCs from all depots expressed similar levels of mesenchymal markers CD44, CD90 and CD105 (p=0.288, p=0.43 and p=0.837, respectively). After adipogenic induction, intracellular lipid increased for more than 32% and PPARγ mRNA showed more than twofold increase from all three depots. However, adiponectin and HAS-2 mRNA levels were significantly higher in the eyelid and orbital ADSCs than those from the subcutaneous ADSCs after induction (2.4×10, 3.9×10 folds vs below detection limit; 63.3-fold, 26.1-fold, vs 33% reduction, respectively; all p=0.002). Significantly more myofibroblasts and higher mRNA level of α-SMA were obtained from the orbital and eyelid compared with the subcutaneous ADSCs during myofibrogenic induction (80.2%, 70.6% vs 29.3%; 30.2-fold, 24.2-fold vs 1.7-fold, respectively; all p=0.002).

Conclusion: ADSCs from different adipose depots of the same donors exhibited similar mesenchymal phenotypes but differed significantly in adipogenic, myofibrogenic potentials and associated HA synthesis. These depot-specific characteristics of ADSCs may contribute to site-specific adipose tissue involvement in TAO.

Download full-text PDF

Source
http://dx.doi.org/10.1136/bjophthalmol-2017-311339DOI Listing

Publication Analysis

Top Keywords

depot-specific characteristics
8
adipose tissue-derived
8
thyroid-associated orbitopathy
8
adscs
8
adipose depots
8
tao mesenchymal
8
eyelid orbital
8
mesenchymal markers
8
immunofluorescent staining
8
adipogenic induction
8

Similar Publications

Adipose tissue dysfunction is one of the features of Polycystic Ovary Syndrome (PCOS) with dysregulated adipogenesis, altered functional pathways and increased inflammation. It is increasingly clear that there are also male correlates of the hormonal and metabolic features of PCOS. We hypothesised that the effects of adipose tissue dysfunction are not sex-specific but rather fat depot-specific and independent of obesity.

View Article and Find Full Text PDF

Adipose tissue is distributed in diverse locations throughout the human body. Not much is known about the extent to which anatomically distinct adipose depots are functionally distinct, specialized organs, nor whether depot-specific characteristics result from intrinsic developmental programs, as opposed to reversible physiological responses to differences in tissue microenvironment. We used DNA microarrays to compare mRNA expression patterns of isolated human adipocytes and cultured adipose stem cells, before and after ex vivo adipocyte differentiation, from seven anatomically diverse adipose tissue depots.

View Article and Find Full Text PDF

Adipocyte traits limiting cellular insulin responsiveness and glucose transport.

Am J Physiol Endocrinol Metab

December 2023

Department of Experimental Medical Science, Lund University, Lund, Sweden.

Adipocyte dysfunction is a hallmark of systemic insulin resistance. Insulin-responsive glucose transporter 4 (GLUT4) is downregulated in the insulin resistant state, and cellular insulin responsiveness varies depending on fat depot origin and degree of adipose expansion. Here, we have resolved factors limiting cellular insulin responsiveness, by examining adipocyte function and traits related to glucose transport at the cellular level.

View Article and Find Full Text PDF

Body mass index (BMI) and blood biomarkers are not enough to predict cardiovascular disease risk. Apolipoprotein B was identified to be associated with cardiovascular disease (CVD) progression. The Dual-energy X-ray Absorption (DXA) results could be considered as a predictor for cardiovascular disease in a more refined way based on fat distribution.

View Article and Find Full Text PDF

Of mice and men: Pinpointing species differences in adipose tissue biology.

Front Cell Dev Biol

September 2022

Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.

The prevalence of obesity and metabolic diseases continues to rise, which has led to an increased interest in studying adipose tissue to elucidate underlying disease mechanisms. The use of genetic mouse models has been critical for understanding the role of specific genes for adipose tissue function and the tissue's impact on other organs. However, mouse adipose tissue displays key differences to human fat, which has led, in some cases, to the emergence of some confounding concepts in the adipose field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!