G protein-coupled receptors (GPCRs) have emerged as key biological entities that regulate a plethora of physiological processes and participate in the onset and development of many diseases. Moreover, these receptors are important targets of almost 25% of the current therapeutic drugs in the market. Upon agonist binding, GPCRs activate a great number of signaling pathways, resulting in important cellular events like gene transcription, survival, proliferation and differentiation. In order to activate such events, GPCRs interact with a variety of scaffold and molecular entities, particularly with G proteins, but also with β-arrestins and the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway, forming unique signaling modules. The aim of this review is to analyze the signaling features of the multi-protein complex GPCR-β-arrestin-ERK1/2, a unique signaling module that has received considerable attention from different research groups due to its molecular and physiological roles in diverse cellular contexts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejcb.2018.04.001 | DOI Listing |
Curr Biol
December 2024
Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:
Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions. It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes. In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Pharmacy, Jiangsu University, 212013, Zhenjiang, PR China. Electronic address:
To enhance the biomarker diagnostics sensitivity and selectivity of human papillomavirus type 16 oncoprotein E7 (HPV16 E7) in serum, a label/enzyme-free electrochemical detection platform was developed. This platform featured a type of "Super-turn-off" nanobiosensor monitored through differential pulse voltammetry (DPV). It integrated the magnetic self-assembly property of the α-FeO/FeO@Au/Sub/BSA signal transport nano-medium with the high specificity of CRISPR/Cas14a and the amplification capability of the bipedal walker (DNA walker composed of two ssDNA strands), resulting in the enhanced specificity and anti-interference performance while remaining stable at 4 °C for over 30 days.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.
View Article and Find Full Text PDFEXCLI J
November 2024
Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland.
Cutaneous melanoma is the deadliest form of skin cancer. Despite advancements in treatment, many patients still face poor outcomes. A deeper understanding of the mechanisms involved in melanoma pathogenesis is crucial for improving diagnosis and therapy.
View Article and Find Full Text PDFThe activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!