A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vertical distribution of ammonia-oxidizing microorganisms across a soil profile of the Chinese Loess Plateau and their responses to nitrogen inputs. | LitMetric

Vertical distribution of ammonia-oxidizing microorganisms across a soil profile of the Chinese Loess Plateau and their responses to nitrogen inputs.

Sci Total Environ

Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA. Electronic address:

Published: September 2018

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) oxidize ammonia into nitrite, the first and rate-limiting step of microbial nitrification, and exert major controls over soil nitrogen transformations. The Loess Plateau in northwest China is characterized with deep soils that are often exposed to the surface and reactive nitrogen (N) inputs due to erosion and human removal of the surface soil. However, few have examined the distribution of AOA and AOB along the profile of Loess Plateau soils and their responses to N inputs. We examined the abundance and diversity of AOA and AOB along the soil profile (0-100cm) and their responses to two levels of N inputs (low at 10, and high at 100μgNg soil) in a 55-d incubation experiment. While AOB were most numerous in the surface soil (0-20cm), AOA were most abundant in the subsoils (20-40 and 40-60cm), suggesting a niche differentiation between AOA and AOB along the soil profile. High N input increased AOB nearly ten-fold in the upper two layers of soils (0-20 and 20-40cm) and sixteen to twenty-five fold in the deeper soil layers (40-60, 60-80 and 80-100cm). However, it only increased AOA by 7% (40-60cm) to 48% (20-40cm). In addition, potential nitrification rate and NO emissions correlated only with AOB. Finally, high N input significantly increased AOB diversity and led to nitrite accumulation in deep soil layers (60-80 and 80-100cm). Together, our results showed that high N input can significantly alter the diversity and function of ammonia-oxidizing microbes in the deep soil of Loess Plateau, suggesting the need to examine the generality of the observed changes and their potential environmental impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.04.104DOI Listing

Publication Analysis

Top Keywords

loess plateau
16
soil profile
12
aoa aob
12
high input
12
soil
10
nitrogen inputs
8
aob
8
surface soil
8
aob soil
8
input increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!